LONG TERM OUTCOME OF JUVENILE IDIOPATHIC ARTHRITIS IN ADULTHOOD: THE MONOCENTRIC EXPERIENCE OF 520 PATIENTS FOLLOWED FOR 20 YEARS IN A TRANSITION TERTIARY CLINIC OF PEDIATRIC RHEUMATOLOGY.

I. Pontikaki1, S. Carbognin2, F. Corona3, A. Petacci4, R. Cimaz1, 1ASSI-PRIN-CTO, Chair of Pediatric Rheumatology, University of Milan, MILAN, Italy; 2IRCSS Ca GRANDA Ospedale Maggiore Policlinico, MILAN, Italy

Background: Juvenile Idiopathic Arthritis (JIA) is a chronic pediatric inflammatory disease that shows many differences compared to adult-onset arthritis. The different clinical manifestations, the assessment and the management of JIA is the reason that the transition from childhood to adulthood is an important multidimensional process that emphasizes a lot of aspects.

Objectives: To describe the long-term outcome of JIA.

Methods: Five-hundred and twenty patients affected by JIA and referred to a transition care rheumatology tertiary centre were considered between 1999 and 2019. The outcome assessment included remission, disease duration, medications, number of prosthesis implantation, pregnancies, mortality and social integration (employment status and educational level).

Results: A hundred and thirty-six (28%) males and 382 (73%) females were included; 157 (30%) patients were lost to follow up. The mean age of the patients was 27 (18-57) years, with a mean age at onset of 8 years and an average disease duration of 19 years. Subtypes of JIA at disease onset included 252 (48%) oligoarthritis, 134 (26%) polyarthritis, 64 (12%) systemic arthritis, 22 (4%) psoriatic arthritis, 43 (8%) enthesitis related arthritis and 1 (0.1%) undifferentiated arthritis. Ninety-three (18%) patients suffered of uveitis. Ninety-five implant prosthesis and 16 arthrodeses were recorded. At follow up 198 (38%) patients were on remission of which 107 (20%) off medication. Among the 322 patients still on medication, 84 (16%) were under treatment with RD, the majority with SLE, but the safety data obtained indicate the need for careful monitoring of therapy, primarily taking into account the frequency of infections. A decrease in IgG level was observed in a small proportion of pts and did not correlate with the incidence of infections. The frequency of serious infections was low.

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2020-eular.2496

A PILOT PROTEOME ANALYSIS OF PLASMA BIOMARKERS IN IGA VASCULITIS

S. Demir1, M. Sardan1, I. Yet1, E. Sag1, Y. Bilginer1, O. Celikbicak1, S. Özen1, 1Hacettepe University Faculty of Medicine, Department of Pediatric Rheumatology, Ankara, Turkey; 2Hacettepe University Faculty of Medicine, Department of Bioinformatics, Ankara, Turkey; 3Hacettepe University Faculty of Medicine, Department of Chemistry, Ankara, Turkey

Background: IgA vasculitis/ Henoch Schönlein Purpura (IgAV/HSP) is the most common vasculitis of childhood, characterized by the IgA1 immune deposits in the small vessels. Although it is very common, the understanding of its molecular pathogenesis is still very limited.

Objectives: We aimed to analyse plasma proteomes of IgAV/HSP patients using nano liquid chromatography – tandem mass spectrometry (nLC-MS/MS) to investigate the disease pathogenesis.

Methods: IgAV/HSP was diagnosed according to the Anchark criteria in 2008 (1). Five active IgAV/HSP patients and two age and gender-matched healthy controls were enrolled in this pilot study. Serum samples from subjects were collected on the same day of IgAV/HSP diagnosis and before steroid or other immunosuppressive treatment initiated. Sample preparation was carried out using ProteoMs IST Kit. We investigated the alteration of serum proteome using the nano LC-MS/MS approach. Bruker raw files were analyzed using the proteomics software Max Quant (1.6.7.0). The human reference proteome set from UniProt was used to identify proteins. Proteomic data were analyzed with Perseus 1.6.7.0.

Results: The data file includes peptide and protein identification, accession numbers, protein and gene names, sequence coverage and label free quantification (LFQ) values of each sample. 345 proteins were reported per sample. Identities from the reverse decoy database, identified by site only and known contaminants were excluded. Data were log transformed. Two sample T-test was performed between groups. We identified 23 significantly different expressed proteins (Table 1). Mainly the differentially expressed proteins were in the Ig and complement pathway, innate immune inflammatory,