Conclusion: This study confirms that PM can now be considered a rare IIM subtype. A thorough examination, complete myositis antibody panel including HMGR C50 testing and careful interpretation of the biopsy results is recommended to accurately classify these patients.

References:

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2020-eular.1435

SAT0332

ANTIBODIES AGAINST CYTOSOLIC 5'-NUCLEOTIDASE 1A IN SPORADIC INCLUSION BODY MYOSITIS: ASSOCIATION WITH CLINICAL AND MRI FEATURES

R. Dejtehpavon1, S. Shah2, S. Wastling2, J. Thornton2, T. Yousry1, J. M. Morrow1, P. M. Machado3
1 University College London, Queen Square Centre for Neuromuscular Diseases, London, United Kingdom; 2 University College London, Neurorehabilitation Academic Unit, London, United Kingdom; 3 University College London, Centre for Rheumatology & Queen Square Centre for Neuromuscular Diseases, London, United Kingdom

Background: Autoantibodies directed against cytosolic 5'-nucleotidase 1A (cN1A) have been identified in sporadic inclusion body myositis (sIBM) and other connective tissue diseases. Anti-cN1A antibodies may support the diagnostic process for sIBM as well as potentially provide clues for disease pathogenesis. Nevertheless, the utility of anti-cN1A autoantibody testing in clinical practice remains unclear and requires validation.

Objectives: To investigate the association between anti-cN1A antibody status and clinical and MRI features in patients with sIBM.

Methods: Data for patients fulfilling European Neuromuscular Centre (ENMC) 2011 criteria for sIBM were obtained from a natural history study database. Demographic, clinical, functional assessment, and muscle MRI data in patients with sIBM who had anti-cN1A autoantibody testing were collected and analysed. Comparisons between subgroups with anti-cN1A antibody status were performed with the Mann-Whitney or Fisher’s exact tests, as appropriate.

Results: Forty-nine patients with sIBM had anti-cN1A autoantibody testing, of whom 17 (34.7%) were positive. Twelve patients had muscle MRI performed (seropositivity=5). Demographics, disease duration at antibody testing and clinical and MRI features in patients with sIBM.

Background: Systemic sclerosis (SSc) is an autoimmune rheumatic disease characterized by visceral and skin fibrosis, vascular dysfunction, and immune dysregulation. Regarding cardiac manifestations, pericardial disorder is one of the most frequent but often asymptomatic. Dysregulation. Regarding cardiac manifestations, pericardial disorder is one of

Disclosure of Interests:

C. Meier1, K. Freiburg; 2 C. Bovet1, J. Schniering1, O. Distler1, C. Nakas2,3, B. Maurer1. 1 Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland; 2 University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; 3 Laboratory of Biometry, Department of Agriculture, Drop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Thessaly, Greece

Background: In fibrotic diseases, metabolic processes are altered with a tendency towards an anabolic state, which is partially reflected in serum. Circulating biomarkers for interstitial lung disease (ILD), the leading cause of death in systemic sclerosis (SSc), are still sparse and not established in routine care.

Objectives: To assess the potential of serum metabolites as biomarkers for the presence and progression of SSc-ILD.

Methods: Age and sex matched serum samples of SSc patients from the Zurich cohort and of healthy controls (HC) were analyzed. Progressive SSc-ILD was defined as either a relative decrease in forced vital capacity (FVC) >15%, a decrease in FVC of 5-9% and a concomitant decrease of carbon dioxide diffusivity (D(CO2)) >15%, or an increase of the extent of lung fibrosis on computed tomography from <20% to >20% compared to the last visit (mean follow-up interval = 14 months (range = 9-26)). Sera of HC, non-ILD SSc and stable and progressive SSc-ILD patients (n = 12 per group; total n = 48) were screened for 110 metabolites by targeted liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Peak areas were analyzed with R 3.6. For univariate analysis, FDR-corrected one-way ANOVA was used. In multivariate group-wise partial least squares discriminant analysis (PLS-DA), variable importance in the projection (VIP) scores ≥2 were considered significant.

Results: In total, 85 metabolites were detected. Univariate analysis of all groups were suggestive of changes for 1-methyladenosine, L-tryptophan, L-tyrosine, L-leucine and xanthine (p = 0.077, 0.026, 0.077, 0.028 and 0.032, respectively). In PLS-DA, HC and SSc patients differed in their levels of L-tyrosine and L-tryptophan, while levels of L-threonine, 3-aminoisobutyric acid, adenosine monophosphate and xanthine were changed when comparing non-ILD and SSc-ILD patients. Receiver operating curve (ROC) analysis of significant metabolites from uni- and multivariate testing resulted in separation of SSc patients from HC by L-tyrosine (area under the curve (AUC) = 0.81, 95% confidence interval (CI): 0.670-0.96) and L-tryptophan (AUC = 0.86, CI: 0.75-0.97) and 1-methyladenosine (AUC = 0.82, CI: 0.71-0.94). Progressive SSc-ILD patients were separated from stable patients by their levels of L-isoleucine, L-leucine, adenosine monophosphate and xanthine (AUC = 0.83, 0.85, 0.79 and 0.77; CI: 0.66-1.00, 0.70-1.00, 0.60-0.97 and 0.55-0.99, respectively). Validation of increased values of the branched-chain amino acids L-leucine and L-isoleucine in progressive SSc-ILD vs. stable ILD using an enzymatic assay resulted in similar results as LOC/MS/MS analysis, with higher values detected in progressive vs. stable patients (mean = 286.5 and 235.5nM, respectively; p = 0.005). In ROC analysis (AUC = 0.81, CI: 0.62-1.00), a cut-off value of 250.3 nM separated progressive from stable patients with a sensitivity of 72.7% and a specificity of 83.3%.

Conclusion: This study in SSc-ILD patients suggested alterations in serum metabolite levels corresponding with their current state of disease, indicating the potential use of serum metabolites as discriminating biomarkers upon further confirmation in larger multicenter studies.

Disclosure of Interests: Chantal Meier: None declared, Katrin Freiburghaus: None declared, Cedric Bovet: None declared, Janine Schniering: None declared, Oliver Distler Grant/research support from: Grants/Research support from Actelion, Bayer, Boehringer Ingelheim, Competitive Drug Development International Ltd and Mitsubishi Tanabe; he also holds the issued Patent on mi-29 for the treatment of systemic sclerosis (US8734898, EP2331143), Consultant of: Consultancy fees from Actelion, Aceleron Pharma, Anama, Bayer, Baecon Discovery, Blode Therapeutics, Boehringer, CSL Behring, Catension, Chemob, Curzon Pharmaceuticals, Ergonex, Galapagos NV, GSK, Gluenmark Pharmaceuticals, Inventiva, Ifalmarco, Iqvia, medac, Medscape, Mitsubishi Tansabe Pharma, MSD, Roche, Sanofi and UCB, Speakers bureau: Speaker fees from Actelion, Bayer, Boehringer Ingelheim, Medscape, Pfizer and Roche, Christos Nakas: None declared, Brita Maurer Grant/ research support from: AbVie, Protagen, Novartis, congress support from Pfizer, Roche, Actelion, and MSD, Speakers bureau: Novartis
DOI: 10.1136/annrheumdis-2020-eular.702

SAT0343

PERICARDIAL INVOLVEMENT IN SYSTEMIC SCLEROSIS

P. Morán Álvarez1, C. De la Puente Bujóld1. 1 Hospital Universitario Ramón y Cajal, Madrid, Spain

Background: Systemic sclerosis (SSc) is an autoimmune rheumatic disease characterized by visceral and skin fibrosis, vascular dysfunction, and immune dysregulation. Regarding cardiac manifestations, pericardial disorder is one of the most frequent but often asymptomatic.

Objectives: To analyze clinical manifestations, diagnostic tools and treatments of a patient cohort with SSc and pericardial involvement associated.

Methods: A descriptive, observational, cross-sectional study was carried out. We included all patients between 1975 and 2019 with diagnosis of SSc. Demographic, clinical and analytical data; imaging tests; treatments; and mortality rate were collected.