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Glucosamine and O-GlcNAcylation: a 
novel immunometabolic therapeutic 
target for OA and chronic, low-grade 
systemic inflammation?
Gabriel Herrero-Beaumont  ‍ ‍ ,1,2 Raquel Largo  ‍ ‍ 2

Osteoarthritis (OA) is a disease with a very 
long course and varied clinical expression 
in the initial stages, when it is really chal-
lenging to adequately measure disease 
outcomes both in clinical trials and in 
daily life.1 It is also very difficult to accu-
rately study the efficacy of symptomatic 
slow-acting drugs for OA and that of non-
pharmacological treatments.2 Although 
the efficacy of glucosamine (GlcN) in the 
treatment of OA is still a controversial 
issue3 4, recent high-quality epidemiolog-
ical studies confirm previous data showing 
that prolonged GlcN intake, regardless of 
its effect on OA progression, could 
decrease cardiovascular disease (CVD) 
events, and the incidence of CVD-
associated diseases.5–8 These data should 
be analysed keeping in mind that CVD is 
the main cause of death in patients with 
OA.9 Different authors suggest that this 
protective effect may be associated with 
the anti-inflammatory properties of 
GlcN,5 although the molecular basis has 
been only partially defined.

The imbalance between the mechanical 
loading and its absorption by the articular 
cartilage is the origin of joint tissue alter-
ation in OA. While a severe overload can 
deteriorate any kind of cartilage, a certain 
load that is physiologically well tolerated 
by a robust cartilage could be the origin 
of pathological alterations for a weakened 
one.9 Cartilage damage begins when the 
load prevails over the resistance, which 
in the midterm activates innate immune 
response in the different joint tissues, 
and is, at least partially, responsible for 
joint deterioration. Unbalanced mechan-
ical forces and damage-associated molec-
ular patterns turn on the innate immune 
system through the activation of the Toll-
like receptors. Once this response is acti-
vated, a secondary wave of inflammatory 

mediators is released, with a robust 
increase in the concentration of cytokines 
and metalloproteases, the final effectors 
of cartilage destruction.9 Certainly, these 
mediators can be also partially released 
into the circulation in small amounts but 
during extended periods of time, then 
contributing to what has been defined as 
chronic low-grade systemic inflammation 
(CSI).

Several factors increasing CVD in 
patients with OA revolve around CSI and 
lack of exercise and physical activity.10 11 
CSI is clinically silent; it is not associated 
with energy expenditure—unlike classic 
inflammation that consumes it in huge 
amount—and it mainly involves molec-
ular signalling instead of cell proliferation, 
all accounting for its difficult thera-
peutic management.10 Low-grade CSI is 
commonly triggered by overnutrition, 
that leads to obesity and/or diabetes, and 
hypercholesterolaemia. These metabolic 
alterations result in a prominent increase 
in the synthesis of adipokines and proin-
flammatory mediators by adipose tissue, 
and its infiltration by immune cells.11

It is important to highlight that these 
OA pathogenic factors: mechanical and 
nutrient overload, as well as adipokines 
and proinflammatory cytokines, converge 
in the same regulatory master nodes 
within the cell. The chronic stimulation 
of the innate immune system results in a 
robust activation of nuclear factor kappa-B 
(NF-κB), mitogen-activated protein kinase 
(MAPK) and phosphatidyl-inositol-3-
kinase (PI3K)-dependent pathways.9

Therefore, mechanical stress, low-grade 
CSI and metabolic imbalance are the 
driving factors for OA onset and progres-
sion. The last two are very active in CVD. 
Overall, this is the immunometabolic 
framework where OA is developed.11

In turn, epidemiological data provided 
by several sound studies strongly 
suggested an association between GlcN 
use and lower risk of CVD, cancer and 
other diseases.5–8 The current report by 
Li et al, involving 495 077 individuals, 

provides further evidence for the associ-
ation between GlcN use and lower risk 
for all-cause mortality (15%) and cause-
specific mortality, including CVD (18%), 
cancer (6%), respiratory (27%) and 
digestive (26%),6 supporting previous 
studies.5 12 However, these data should 
be evaluated with caution, as unexpected 
bias in the study design could exist. Popu-
lation taking regular prescribed medica-
tion or supplementations, including GlcN, 
could constitute a subgroup of patients 
with a better health rating, self-care or 
other unmeasured lifestyle-related factors. 
Indeed, it is impossible to evaluate these 
features in studies of this nature, despite 
a careful adjustment for the measured 
confounders undertaken. In addition, a 
5.5% of response rate observed in this 
cohort could also limit the extrapolation 
of the results to the general population. 
Besides, data collection on medications 
intake did not include detailed informa-
tion on GlcN dosage, duration of the 
treatment or GlcN formulation. Lastly, 
although authors exclude participants who 
died within 2 years of follow-up, a poten-
tial reverse causation cannot be ignored.

Authors demonstrate that GlcN exerts 
a greater protective effect for all-cause 
mortality in smokers, which could be 
related to a greater degree of systemic 
inflammation observed in this group.6 
Intriguingly, an inverse relationship 
between smoking and OA has been 
described.13 Prolonged GlcN intake has 
been previously associated with a decrease 
in serum C-reactive protein (CRP).14 
Furthermore, studies on type 2 diabetes 
(T2D) also indicate that patients on GlcN 
treatment showed a decrease in T2D 
incidence, after adjustment for different 
confounding factors.8 Again, the decrease 
in T2D incidence was greater in patients 
with higher serum CRP. Overall, a rela-
tionship between the higher rate of CSI 
and the protective effect of GlcN intake 
is observed.

The analysis of the effect of GlcN should 
consider pharmacokinetic data. After a 
usual oral dose intake, 1500 mg, GlcN 
serum concentration increases and began 
to be detected within 30–45 min, reaching 
maximum values after 2–3 hours, with a 
range between 2 and 12 µM (0.34–2 µg/
mL).15 In healthy volunteers, several daily 
doses of 1500 mg GlcN were administered 
until a steady state was reached, when 
the maximum concentration was around 
10 µM, 3 hours after product administra-
tion. These concentrations were up to 100 
times higher than endogenous levels.16 
However, GlcN levels rapidly decreased, 
being almost undetectable after 5–8 
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hours.15 16 It is unknown the GlcN serum 
concentration to consider this drug as a 
pharmacologically active agent, or the 
concentration needed to modulate some 
specific mechanisms. In ageing mice, long-
time GlcN intake induced an increase 
in its plasma concentration up to 2 µM, 
that was able to increase the life span in 
these animals.17 Overall, conventional 
GlcN administration appears to cause 
daily peak and trough levels in serum and 
tissue. GlcN concentration fluctuates in 
such a way that it can be considered an 
intermittent administration, even for long-
term treatments. This pharmacokinetics 
could have unexpected consequences in 
the regulation of different metabolic cell 
pathways.

Different studies have tried to decipher 
the mechanisms by which GlcN could 
decrease CVD. Although no preclinical 
models that mimic OA-induced atheroscle-
rosis have been described, the results in an 
experimental model of chronic arthritis-
aggravated atherosclerosis in rabbits with 
hypercholesterolaemia could shed some 
light. Severe chronic arthritis in rabbits 
with hypercholesterolaemia and balloon-
induced vascular damage increased plaque 
instability in the injured artery, and leads 
to the appearance of spontaneous plaques 
in the thoracic aorta.18 This model mimics 
the accelerated atherosclerosis observed 
in CSI diseases, in the presence of a meta-
bolic imbalance. Oral high doses of GlcN, 
following the human therapeutic regimen, 
substantially prevented the development 
of atherosclerotic lesions, reduced serum 
inflammatory markers and inhibited 
NF-κB activation in circulating mononu-
clear cells.18 Although the ability of GlcN 
to inhibit NF-κB activation has long been 
recognised,19 the precise molecular mech-
anism is still under study.

Recent data have demonstrated that 
GlcN administration to septic mice 
decreases systemic inflammation and 
improves cardiovascular dysfunction, 
while an increase in the O-N-Acetyl-
glycosylation (O-GlcNAc) of NF-κB p65 
subunit was reported.20 Interestingly, we 
have also observed that prolonged GlcN 
administration to OA rabbits decreases 
joint damage and cartilage inflammation 
in correlation with a profound modi-
fication in the amount of O-GlcNAc 
proteins.21 Furthermore, GlcN induced a 
decrease in cartilage NF-κB activation, in 
parallel to an increase in p65 O-GlcNAcy-
lation (Largo, unpublished data).

O-GlcNAc, or the attachment of O-N-
Acetyl-glucosamine to a protein, is a 
particular post-translational modification 
(PTM) by which this single sugar adds to 

serine and threonine residues of nuclear 
and cytoplasmic proteins (figure  1). 
O-GlcNAcylation occurs in thousands of 
proteins. A single pair of enzymes—O--
GlcNAc transferase (OGT) and O-Glc-
NAcase (OGA)—controls the highly 
dynamic cycling of this protein modifica-
tion.22 23 OGT transfers this sugar from a 
unique donor substrate, uridine diphos-
phate GlcNAc (UDP-GlcNAc), that is the 
final product of nutrient flux through the 

hexosamine biosynthetic pathway (HBP), 
which integrates glucose, amino acid, fatty 
acid and nucleotide metabolism to synthe-
sise the molecule (figure 1).

O-GlcNAcylation plays a key role in the 
regulation of both cellular homeostasis, in 
response to nutritional or hormonal cues, 
but also in response to stress or damage, 
such as that induced by inflammation or 
immune activation.24–26 In fact, protein 
O-GlcNAc has been proposed as a nutrient 
sensor that regulates crucial cell responses 
to very different pathophysiological 
processes,24–27 ranging from cell transcrip-
tion to protein folding or degradation.

The large number of proteins and 
processes modified by O-GlcNAc by two 
such promiscuous enzymes gives an idea 
of ​​the complex regulation of this process 
within the cell. The exposure to increased 
concentration of nutrients, particularly 
glucose and fatty acids in cultured cells, 
increases HBP flux, then enhancing the 
pull of O-GlcNAc proteins. In fact, the 
negative effects of chronic hyperglycaemia 
have been associated with the accumu-
lation of O-GlcNAcylated proteins in 
different tissues.28 However, changes in 
HBP flux and UDP-GlcNAc concentration 
are not the only factors driving this PTM. 
O-GlcNAc levels also vary on a substrate-
specific basis, and depending on OGT and 
OGA and its adaptor proteins location 
and interaction with the substrate.23 In 
addition, O-GlcNAc signalling is under 
tight temporal control. Cellular O-Glc-
NAcylation levels decrease in hours after 
glucose deprivation and increase at later 
time points. Adipocytes in response to 
insulin, or neurons following depolarisa-
tion, change the O-GlcNAc amount within 
minutes. Therefore, protein O-GlcNAc is 
highly changing and not only dependent 
on OGT and OGA presence and activity, 
but also on nutrient availability, which 
makes this type of PTM highly sensitive 
to very different forms of cellular stress.

Acute and chronic alterations in the 
amount of O-GlcNAcylated proteins have 
been associated with different human 
diseases. Experimental cardiac ischaemia/
reperfusion models showed that acute 
increases in protein O-GlcNAcylation 
induced by GlcN or glutamine correlated 
with a better functional recovery, while 
similar conclusions were obtained with 
the more clinically applicable remote isch-
aemic preconditioning.29 In contrast to the 
benefit in acute and transient elevations, 
chronic increments or decreases in the 
levels of O-GlcNAcylated proteins have 
been associated with the pathogenesis of 
degenerative diseases such as Alzheimer’s 
and Parkinson’s, cancer, diabetes and 

Figure 1  The hexosamine biosynthetic 
pathway (HBP) and O-GlcNAcylation process. 
Glucose enters the cell and is phosphorylated 
and then converted to fructose-6-phosphate. 
This product is then oxidised through glycolysis, 
and 3%–5% of it is converted to glucosamine-
6-phosphate (GlcN-6P) by the limiting 
enzyme of this pathway, glutamine:fructose-
6-phosphate-amidotransferase (GFAT), that 
transfers the amine group from the amino acid 
pool. Glucosamine-6P can also be obtained by 
the phosphorylation of GlcN. In this way, GlcN 
intake is able to increase HBP flux when the 
cell is exposed to pharmacological extracellular 
concentrations of this molecule, bypassing 
GFAT regulation. The corresponding transferase 
adds the acetyl group from Acetyl-CoA, a key 
metabolic node mainly coming from fatty 
acid metabolism. The sequential synthesis of 
uridine-diphosphate-N-Acetyl-glucosamine-1-P 
(UDP-NAcGlc-1-P) incorporates the residue that 
proceeds from the nucleotide metabolism, the 
uridine-triphosphate (UTP). The final molecule 
synthesised in this pathway, UDP-GlcNAc, is 
the unique donor for O-GlcNAc modification of 
nuclear and cytoplasmic proteins by O-GlcNAc 
transferase (OGT). In addition, O-GlcNAcase 
(OGA) catalyses the removal of O-GlcNAc. 
*The metabolic molecules whose excess 
has demonstrated to increase HBP flux, thus 
increasing the amount of O-GlcNAcylated 
proteins.
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its complications, as well as ageing and 
OA.23 30

Interestingly, the cellular O-GlcNAc-
ylation has been described as a buffering 
system, finely tuned, designed to tolerate 
moderate and acute cell alterations 
and adapt cell response accordingly.23 
Moderate or acute alterations in nutrient 
availability will produce transient fluctu-
ations in the pull of O-GlcNAc proteins. 
In turn, chronic alterations will overcome 
the system, resulting in cell and tissue 
damage.23 It is conceivable that different 
interventions able to restore an exhausted 
buffering system, such as caloric restriction 
or low-carbohydrate diet, could in some 
way trigger the return to cell homeostasis.

Long-term GlcN intake would lead to 
daily intermittent changes in the concen-
tration of this pharmacologically active 
agent, that would act as mild acute 
impacts on HBP flux, improving cell auto-
protective systems as those induced after 
cardiac ischaemia/reperfusion. GlcN, as 
an HBP metabolite that bypasses the rate-
limiting step of this pathway (figure  1), 
has demonstrated to significantly modu-
late O-GlcNAc. In different preclinical 
models, GlcN improved local and systemic 
inflammation and prevented tissue 
damage simultaneously with a significant 
increase in O-GlcNAc.17 20 21 GlcN could 
restore the exhausted buffering capacity of 
the O-GlcNAcylation system, improving 
overnutrition-related chronic inflamma-
tion. However, the time, concentration 
and tissue-dependent specific effects of 
GlcN are mainly unexplored.

One of the most outstanding conclu-
sions of these observations is to recognise 
that a modest pharmacological effect, if it 
is time extended, could render a reason-
able benefit. Although a difficulty arises, 
as the measurement of the effect size is 
extremely difficult. The 20% improve-
ment observed in CVD with GlcN; it is 
challenging to be detected in OA over 
years of disease progression, with the clin-
ical and imaging methodology currently 
used in clinical trials. In any case, what 
is important is not the magnitude of the 
effect but the door opened in the search 
for new therapeutic targets.
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