Table 2. Patients diagnosed with autoimmune disease (n=120)

<table>
<thead>
<tr>
<th>LABORATORY TESTS</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESR (mg/dL) median (IQR)</td>
<td>0.20 (0.4-0.6)</td>
</tr>
<tr>
<td>GIP (umol/L) median (IQR)</td>
<td>22.0 (20.0-33.3)</td>
</tr>
<tr>
<td>ACR, mean (SD)</td>
<td>58.2 ± 46.3</td>
</tr>
<tr>
<td>Calcium, mean (SD)</td>
<td>9.4 ± 0.3</td>
</tr>
<tr>
<td>Thyroxine, n (%)</td>
<td>0.7 ± 0.3</td>
</tr>
<tr>
<td>Lympohocytosis, n (%)</td>
<td>0.1 ± 0.3</td>
</tr>
<tr>
<td>Hypocalcemia, n (%)</td>
<td>0.1 ± 0.3</td>
</tr>
<tr>
<td>CRP >3.5 (mg/L), n (%)</td>
<td>1.2 ± 0.3</td>
</tr>
</tbody>
</table>

METHODS

Objective: To describe off-label use, efficacy and tolerance of TCZ use in Internal Medicine Departments.

Methods: This is a retrospective, descriptive and multicenter study from 9 departments of Internal Medicine. Data were reported using a standardized case report file in January 2019.

Results: Fifty one patients were included (19 men, 32 women). Mean age was 55.6 ± 17 years (range 23-80). TCZ was used in:
- 12 connective tissue diseases (23.5%): relapsing polychondritis (n=6), systemic sclerosis (n=3), polyarteritis nodosa (n=1), undiagnosed connective tissue disease (n=3).
- 10 vasculopathies (19%): Takayasu arteritis (n=7), Cogan disease (n=1), panarteritis nodosa (n=1), unclassified vasculitis (n=1).
- 10 ophthalmologic conditions (19%): non infectious posterior uveitis (n=8), sympathetic ophthalmia (n=1), Basedow orbitopathy (n=1).
- 7 juvenile Still’s disease (12%); adult onset Still’s disease (16%).
- 5 cases of polymyalgia rheumatica (10%)
- 3 miscellaneous diseases (6%): idiopathic AA amyloidosis, multicentric non HHV8 Castelmann disease, Erdheim Chester disease (1 case each).

Mean disease duration was 7.5 ± 6.4 years. In 44 cases (86%) TCZ was administered for refractory disease to corticosteroids and immunosuppressive drugs. Previous therapies included corticosteroids (83%), methotrexate (66%), TNF inhibitor drug (44%), azathioprine (20.8%), mycophenolate (12%), cyclophosphamide (8%), rituximab (10%), hydroxychloroquine (6%), anakinra in 2 patients and interferon, dapsone, etoposide, leflunomide, abatacept, salazopyrin or intra-venous immunoglobulin in 1 patient each.

TCZ was initiated as first-line therapy (17.5%), second-line therapy (31%), third-line therapy (19%), fourth-line therapy (9%), fifth-line therapy (14%), sixth-line therapy (12%) or as seventh line therapy in one case. TCZ was associated with methotrexate in 3 cases (6%). Treatment route was intravenous (96%).

At the end of the follow up, 41 patients (80%) were still using TCZ, with a mean follow up period of 22 ± 23 months (range 1-90). In these patients, daily corticosteroid use significantly decrease from 16.5 ± 18 mg to 5.7 ± 13.7 mg (p<0.005, using paired T test). Considering the 28 patients using TCZ since more than 6 months, short term efficacy was 93% (2 cases of loss of efficacy).

TCZ was interrupted in 10 patients (19%), because of treatment failure (n=2), side effects (n=2) or side effect + loss of efficacy (n=2). Side effects were infectious (2 pneumonias, zona, sinus infection), pruritus (n=1), urticaria (n=1), hypothyroidism (n=1), acute renal failure (n=1), angioedema (n=1), mouth ulcers (n=1).

Conclusion: TCZ is used in various autoimmune diseases. TCZ allowed a significant corticosteroids reduction and short term efficacy was 93% in patients using TCZ for more than 6 months. Nevertheless TCZ was interrupted in 19% of the patients. TCZ use will probably be more common in the future to treat refractory autoimmune diseases.

Disclosures of Interests: None declared.

DOIs: 10.1136/annrheumdis-2019-eular.7982

FRI0606 AUTOMMUNE MANIFESTATIONS IN A COHORT OF PATIENTS WITH TYPE 1 DIABETES MELLITUS

Andrea Molleda Calero, Tenerife, Reumatologia, San Cristobal De La Laguna, Spain

Background: Type 1 diabetes mellitus (T1D) is an organ-specific autoimmune disease characterized by the presence of circulating, islet-specific auto-antibodies against glutamic acid decarboxylase (GAD65), and the destruction of insulin-producing pancreatic beta cells. An increased risk of developing other serological manifestations and autoimmune diseases has been described, mainly of the thyroid (20% with antithyroid antibodies) and celiac disease (5%). In addition, it has been described in association with Addison’s disease, autoimmune polyglandular syndrome, psoriasis and other systemic autoimmune comorbidities. Previous studies such as anti-nuclear antibodies, RA, juvenile idiopathic arthritis and Sjogren’s syndrome. It has also been suggested that T1D might have a genetic factor, pathogenic pathways with pleiotropic effects, and cytokines such as interferon type I, among others.

Objectives: 1) Study the prevalence of autoimmune comorbidities in patients with T1D. 2) Describe the clinical-immunologic profiles of these patients.

Methods: A descriptive, retrospective study of a cohort of patients diagnosed with T1D, according to ADA (American Diabetes Association), followed by Endocrinology and Rheumatology Units of a 3rd level hospital from June 1975 to July 2018. Clinical and analytical-immunologic
variables were collected. Statistical analysis was performed with SPSS.25.

Results: We included 116 patients from which 55% were women, with a mean age at diagnosis of T1D 18.7 (± 12.3 SD) years. Average age at autoimmune disease diagnosis was 38.8 (± 12.2 SD) years. Average time of evolution between onset of T1D and autoimmune comorbidity was 10.1 (± 10.6 SD) years, except one patient with autoimmune thyroiditis 10 years before T1D. Autoimmune manifestations were showed by 19/116 patients (16.4%). With the following diagnoses: autoimmune hypothyroidism: 10 patients (8.6%); autoimmune polyglucan syndromes: 3 patients (2.6%); RA in 2 patients (1.8%). As well, 1 patient with celiac disease, 1 with cutaneous lupus erythematosus (CLE), 1 with psoriasis and another one with IgG4-related orbital inflammatory disease, (0.9% respectively). Three patients developed articular manifestations (2 rheumatoid polyarthritides and 1 with limited joint mobility or choraarthropathy). 4/19 patients (21%) showed cutaneous lesions (2 with vitiligo, 1 CLE and 1 with psoriasis). Hematological alterations type pernicious anaemia in one patient. No visceral involvement was found. Antibodies were detected to be organ-specific: 7/17 antibodies to thyroid peroxidase (TPO) (+) and 3/17 antibodies to thyroglobulin (+) and one with anti-gludin IgA (+). ANA (+) was detected in four patients (two fine granular pattern, one nucleolar and one homoeous) with negative specificities and 1 patient RF (+). No Anti-CCP antibodies were detected.

Conclusion: 1) 16% of patients with T1D presented autoimmune comorbidity at 10 years after the onset of endocrinopathy, 2) Autoimmune hypothyroidism was the most prevalent autoimmune manifestation (8.6%), followed by autoimmune polyglandular syndrome and RA, similar to other studies. 3) We highlight the unusual finding of IgG4-related orbital inflammation as comorbidity of T1D. 4) The cutaneous lesions (21%) were the most common clinical manifestation in patients with T1D and autoimmunity. We emphasize the absence of visceral involvement.

REFERENCES:

Disclosure of Interests: None declared