MAY SOME OF THE MEFV GENE VARIANTS CAUSE PFAPA SYNDROME LIKE SYMPTOMS?

Mehmet Yildiz, Amra Adrovic, Ipek Ulkersoy, Nesilhan Gucuyener, Oya Koker, Sezgin Sahin, Kenan Barut, Ozgur Kasapcoglu. Cerrahpaşa Medical School, Istanbul University Cerrahpasa, Department of Pediatric Rheumatology, Istanbul, Turkey

Background: PFAPA syndrome is characterized by periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis. As diagnosis usually depends on clinical diagnostic criteria, sometimes it can be difficult to distinguish this clinical entity from the other periodic fever syndromes, especially in regions endemic for FMF.

Objectives: The objective of the study is to evaluate the PFAPA patients MEFV gene variation frequencies (if it was performed) and relations between detected variants and clinical manifestations in pediatric PFAPA patients.

Methods: Nine hundred and thirty-seven patients that were recorded to our database as PFAPA syndrome were evaluated. Patients were reached by phone and asked about characteristics of their fever episodes, presence of acute phase reactant elevation, pharyngitis, aphthous stomatitis/cryptic tonsillitis, cervical lymphadenopathy, arthralgia, arthropathy, abdominal pain, headache, nausea or vomiting, chest pain, diarrhea, skin changes, myalgia and conjunctivitis in the course of fever attack, if they had tonsillectomy if they were attack-free after tonsillectomy and if they had clinical response to steroid or colchicine.

Results: There were 937 PFAPA patients in our database. MEFV gene analysis was performed in 407 (%43) of PFAPA patients and 305 of them had at least one mutation. Most common MEFV mutations of patients were: R202Q heterozygotes (25,9%), M694V heterozygotes (24,2%), E148Q heterozygotes (13,4%), P369S heterozygotes (9,8%) and V726A heterozygotes (8,6%). 305 of detected mutations were located in exon 2, %40,3 of them were located in exon 10 and %13,9 of them were located in exon 3 of the MEFV gene. Patients were divided into five groups according to their mutations’ localization and groups were compared according to clinical features. There were significant differences between groups according to presence of pharyngitis, arthralgia, abdominal pain, myalgia and tonsillectomy history (Table 1).

Conclusion: In this study, we reported increased frequency of MEFV mutations in a large PFAPA patients cohort. Frequency differences of clinical features between groups suggest that some of the MEFV gene mutations may modify phenotype of PFAPA syndrome. Furthermore, underlying MEFV gene mutations possibly lead to PFAPA like clinical presentation in FMF patients. Another remarkable finding of this study is the relatively high P369S mutation rates in patients with PFAPA syndrome.

References:
Because of insufficient disease control, treatment with a TNF-inhibitor (infliximab) was started with apparent improvement of intestinal symptoms. However, persistent granulomatous inflammatory disease of the distal portion of the ileus-rectal anastomosis persisted. Moreover, the patient presented recurrent HLH episodes that required high dose of glucocorticoid and cyclosporine-A treatment. Except one HLH episode related to a vari-cell zoster infection, the other HLH events were most likely triggered by his underlying inflammatory condition. During the HLH episodes levels of IL-18 were moderately elevated (10.860 pg/ml) the IFN-gamma induced chemokine CXCL9 was markedly high (21.871 pg/ml) and remained markedly elevated also during clinical and laboratory HLH remission (3.121 pg/ml and 9.929 pg/ml respectively). Considering the early disease onset, primary immunodeficiency and early intestinal bowel disease onset were genetically ruled out as well as chronic granulomatosis diseases through extensive NGS panels. WES revealed carriage of a private (MAF: 1/125568, TOPMED), predicted pathogenic (CADD: 31), homozygous variant of WNT6 (c.793G>C; p.(Asp265His); NM_006522.3). The patient is now partially controlled on low dose of oral glucocorticoid (0.1 mg/kg), cyclosporine-A (3mg/kg) and antimicrobial treatment.

Conclusion: WNT signalling has been primarily described as a regulatory mechanism in the development of a granulomatous disease. WNT6 role in macrophage differentiation and polarization might also be important in the activation of the IFN-gamma pathway and in recurrent HLH episodes.

REFERENCES:

Disclosure of Interests: Claudia Bracaglia: None declared, Daniela Knafel: None declared, Fiammetta Bracci: None declared, Antonella Insalaco: None declared, Giulia Marucci: None declared, Manuela Pardeo: None declared, Giuseppe Finocchi: None declared, Isabella Cifaldi: None declared, Cristina Cifaldi: None declared, Oliver H. Krumbach: None declared, Giusi Prencipe: None declared, Michael T. Lam: None declared, Simona Coppola: None declared, Oliver H. Krumbach: None declared, Giuseppe Prencipe: None declared, Ivan Caiello: None declared, Cristina Cifaldi: None declared, Simona Copolla: None declared, Alessandra Caiello: None declared, Antonella Insalaco: None declared, Cristina Cifaldi: None declared, Antonio Pascarella: None declared, Marcello Niceta: None declared, Luca Montecchi: None declared, Giuseppe Finocchi: None declared, Eleonora Locati: None declared, Caterina Cancrini: None declared, Alessio Aiuti: None declared, Reza Ahmadian: None declared, Jordan S. Orange: None declared, Fabrizio De Benedetti: None declared, Marco Tartaglia: None declared, Giuliano Torre: None declared, Fabrizio De Benedetti Grant/research support from: Abbvie, SOBI, Novimmune, Roche, Novartis, Sanofi, Pfizer


FR0540

A NOVEL AUTOINFLAMMATORY DISEASE CHARACTERIZED BY NEONATAL-ONSET CYTOPENIA WITH AUTOINFLAMMATION, RASH, AND HEMOPHAGOCYTOSIS (NOCARH) DUE TO ABERRANT CDC42 FUNCTION

Michael T. Lam; Simona Coppola; Oliver H. Krumbach; Giuseppe Prencipe; Antonella Insalaco; Cristina Cifaldi; Isabella Caiello; Simona Copolla; Andrea Finocchi; Franco Locati; Caterina Cancrini; Alessio Aiuti; Reza Ahmadian; Jordan S. Orange; Fabrizio De Benedetti, Marco Tartaglia.

Background: Despite continuous advances in the identification of novel causative genes, several patients with a clinical autoinflammatory phenotype remain unclassifiable.

Objectives: to describe a novel hematological and autoinflammatory disorder in three unrelated patients caused by a de novo missense mutation of CDC42.

Methods: Whole exome sequencing was used to identify the novel variant. The functional impact of altered CDC42 function on hematopoiesis and inflammation was assessed through patient peripheral blood and bone marrow analyses, protein behavior and immune and non-immune cell functioning through in vitro biochemical and functional assays and in vivo C. elegans modeling.

Results: Patients shared the same de novo missense mutation of CDC42 (NM_001791, Chr1:22417990, c.556C>T, p.R186C). Disease features included neonatal-onset cytopenia with dyshematopoiesis, autoinflammation, rash, and hemophagocytosis (collectively termed NOCARH syndrome) (Table). An altered hematopoietic compartment (prevalence of early differentiation elements and substantially decreased clonogenic progenitors) was demonstrated. Complementary assays documented the unique consequences of this mutation on CDC42 localization and function, and its disruptive effect on cell behavior and developmental processes, possibly linked to actin dysregulation. Increased secretion of IL-18, and particularly of IL-18, was observed via ex vivo spontaneous release from unstimulated bone marrow mononuclear cells and by high levels in bone marrow supernatants and plasma. IFNγ was also increased and correlated to CXCL9 levels which were strictly related to ferritin levels. Treatment with anakinra and emapalumab, a monoclonal antibody to IL-18, was identified as critical in the survival of one patient, who underwent successful hematopoietic stem cell transplantation.

Conclusion: The p.R186C amino acid substitution in CDC42 underlies a novel, unique syndrome where CDC42 functional dysregulation has pleiotropic effects, causing hematopoietic disturbance, hyperinflammation, and immune impairment. Early recognition and control of HLH, through neutralization of IFNγ, followed by hematopoietic stem cell transplantation, appear to be crucial to survival.

Disclosure of Interests: Michael T. Lam: None declared, Simona Coppola: None declared, Oliver H. Krumbach: None declared, Giuseppe Prencipe: None declared, Antonella Insalaco: None declared, Cristina Cifaldi: None declared, Isabella Caiello: None declared, Simona Copolla: None declared, Andrea Finocchi: None declared, Franco Locati: None declared, Caterina Cancrini: None declared, Alessio Aiuti: None declared, Reza Ahmadian: None declared, Jordan S. Orange: None declared, Fabrizio De Benedetti Grant/research support from: Abbvie, SOBI, Novimmune, Roche, Novartis, Sanofi, Pfizer


Scientific Abstracts