FRACURE RISK FOLLOWING BARIATRIC SURGERY: A SELF-CONTROLLED CASE SERIES AND RISK PREDICTION ALGORITHM

Danielle E. Robinson1, Ian Douglass2, Garry D. Tan3, Cyrus Cooper4,5
Antonella Delmeltri1,2,10, Kassim Javid Muhammad1, Andrew Judge1
Victoria Y. Strauss1, Daniel Prieto-Alhambra6,11, CSM, NDORMS, University of Oxford, Oxford, United Kingdom; 2Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom; 3Oxford Centre for Diabetes, Endocrinology and Metabolism, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; 4NIHR BRC, Oxford, United Kingdom; 5ARC, Life Course Epidemiology Unit, University of Southampton, Oxford, United Kingdom; 6NDORMS, University of Oxford, Oxford, United Kingdom; 7Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; 8CSM, NDORMS, University of Oxford, Oxford, United Kingdom

Background: Bariatric surgery is increasingly common due to the obesity epidemic. However, there is controversial evidence about the association between bariatric surgery and fracture risk. This may be due to the fundamental differences between patients undergoing bariatric surgery with patients who do not, raising the question: within patients who fracture, are they at increased risk of fracture after surgery? And if so, who is at risk of fracture?

Objectives: 1. To investigate the association between bariatric surgery and risk of three fracture locations using a within person study design comparing a) the 5 year incidence post surgery to the 5 year pre-surgery; b) splitting the 5 year post surgery risk into two windows 0-2 and 2.01 – 5 years. 2. To predict who is at risk of fracture following bariatric surgery.

Methods: A self-controlled case series analysis (SCCS) and Stepwise logistic regression (LR) were conducted. Patients undergoing bariatric surgery were identified in the clinical practice research datalink (CPRD) OQL database and linked to hospital episode statistics (HES) data. Primary outcome was any fracture (any skeletal sites except skull and digits). Secondary outcomes were major (hip, spine, forearm and humerus) and peripheral fractures (forearm and lower leg). For the SCCS, Poisson models in those who fractured were fitted to calculate Incidence Rate Ratios (IRR) for the aforementioned time windows. Potential predictors were selected with an McNemar value of 0.157 and their predictive performance was reported using a C-statistic.

Results: Of 5,492 patients undergoing bariatric surgery, 252 patients had 272 any fractures, 75 (80) major fractures and 126 (135) peripheral fractures. Average BMI was 43.9. Major fracture risk increased nearly three fold following surgery: IRR (95% CI) 2.70 (1.31, 5.57). Conversely, the incidence of any and peripheral fractures did not change: IRRs 1.17 (0.86, 1.60) and 0.92 (0.60, 1.42) respectively. Any and major fracture risk increased in the 3rd to 5th year post-surgery: IRRs of 1.73 (1.08, 2.77), 4.98 (1.94, 12.78) respectively. 7 variables were identified which may predict major fracture with a high c-statistics of 0.77 (0.71, 0.88).

Conclusion: Few patients had fractures (252/5492). The incidence of any and peripheral fractures did not change: IRRs 1.17 (0.86, 1.60) and 0.92 (0.60, 1.42) respectively. Any and major fracture risk increased in the 3rd to 5th year post-surgery: IRRs of 1.73 (1.08, 2.77), 4.98 (1.94, 12.78) respectively. 7 variables were identified which may predict major fracture with a high c-statistics of 0.77 (0.71, 0.88).

Disclosure of Interests: Danielle E Robinson: None declared, Ian Douglass: None declared, Garry D Tan: None declared, Cyrus Cooper: None declared, Antonella Delmeltri: None declared, Kassim Javid Muhammad: None declared, Andrew Judge: None declared, Victoria Y. Strauss: None declared, Daniel Prieto-Alhambra: None declared. A grant was also provided by the NIHR RfPB (project 17/149-1)

ACKNOWLEDGEMENTS: This project was funded by the NIHR RfPB (project 17/149-1) and supported by the NIHR Oxford BRC.

REFERENCES:

Disclosure of Interests: Giovanna Adami: None declared, Giovanni Arioli: None declared, Gerolamo Bianchi: None declared, Maria Luisa Brandi: None declared, Carla Caffarelli: None declared, Loredana Cavalli: None declared, Marco Maturi-Cerin: None declared, Luisella Cianferotti: None declared, Francesco Conversano: None declared, Marco Di Paola: None declared, Davide Gatti: None declared, Giuseppe Girasole: None declared, Andrea Giusti: None declared, Stefano Gonelli: None declared, Monica Manfredini: None declared, Maurizio Muratore: None declared, Ranuccio Nuti: None declared, Paola Pisan: None declared, Laura Quarta: None declared, Ombretta Viapiana: None declared.

TITLUE: LUMBAR SPINE AND PROXIMAL FEMUR OSTEOPOROSIS DIAGNOSIS: REMS TECHNOLOGY IN A MULTICENTER CLINICAL STUDY

Giovanni Adami1, Giovanni Arioli2, Gerolamo Bianchi2, Maria Luisa Brandi3
Carla Caffarelli1, Loredana Cavalli1, Marco Maturi-Cerin4, Luisella Cianferotti1, Francesca Conversano1, Marco Di Paola1, Davide Gatti1, Giuseppe Girasole2, Andrea Giusti3, Stefano Gonelli2, Monica Manfredini3, Maurizio Muratore4, Ranuccio Nuti5, Paola Pisan1, Laura Quarta1, Ombretta Viapiana2

1Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy; 2Department of Neurosciences and Rehabilitation, Carlo Poma Hospital, ASST Mantova, Mantova, Italy; 3SC Rheumatology, ASL 3 Genovese, Genoa, Genoa, Italy; 4Department of Surgery and Translational Medicine, University of Florence, Metabolic Bone Diseases Unit, University Hospital of Florence, Florence, Italy; 5Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; 6Department of Experimental and Clinical Medicine, University of Florence and SOD Rheumatology A CO, Florence, Florence, Italy; 7National Research Council, Institute of Clinical Physiology, Lecce, Lecce, Italy; 8O.U. of Rheumatology, “Galateo” Hospital, San Cesareo di Lecce, ASL-LE, Lecce, Lecca, Italy; 9Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; 10O.U. of Rheumatology, “Galateo” Hospital, San Cesareo di Lecce, ASL-LE, Lecce, Lecca, Italy; 11Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy

Background: To date numerous quantitative methods to diagnose osteoporosis at peripheral sites have been developed. REMS (Radiofrequency Echographic Multi Spectrometry) is a non-ionizing instrument used to quantitatively evaluate bone mineral density at lumbar spine and femoral neck sites [1].

Objectives: To assess the accuracy of REMS in osteoporosis diagnosis at axial sites (lumbar spine and hip) compared with the gold standard, Dual-energy X-ray absorptionometry (DXA).

Methods: We enrolled patients aged from 50 to 75 years and performed a total of 1,699 and 1,794 lumbar spine and proximal femur scans with REMS and DXA. A quality checks on DXA and REMS acquired data were performed through direct examination of scans by experienced operators. We investigated the agreement between the two techniques calculating: Pearson’s correlation coefficient (r), Standard Error of the Estimate (SEE) and efficiency (sensitivity and specificity) in identifying osteoporotic individual (i.e. T-score <2.5).

Results: We found a good linear correlation between REMS and DXA BMD estimation, Pearson coefficient r=0.933 for lumbar spine and r=0.933 for proximal femur (p<0.001 for both). SEE values were 5.2% and 5.6% for lumbar spine and femoral site, respectively. In addition, REMS demonstrated a high sensitivity (92.9% and 92.2% for spine and femur) and specificity (93.5% for spine and 92.6% for femur) for the discrimination of osteoporotic patient. Moreover, considering together all the diagnostic classification categories (healthy, osteopenia and osteoporosis), the diagnostic agreement between REMS and DXA was 90.2% and 89.3% for lumbar spine and proximal femur sites, respectively.

Conclusion: REMS exhibited a high sensitivity and specificity in identifying osteoporotic patients at lumbar spine or proximal femur sites compared with gold-standard DXA. REMS accurately diagnosed osteoporotic patients in clinical routine, at both lumbar spine and proximal femur sites, without using ionizing radiation.

REFERENCES:

Disclosure of Interests: Giovanna Adami: None declared, Giovanni Arioli: None declared, Gerolamo Bianchi: None declared, Maria Luisa Brandi: None declared, Carla Caffarelli: None declared, Loredana Cavalli: None declared, Marco Maturi-Cerin: None declared, Luisella Cianferotti: None declared, Francesca Conversano: None declared, Marco Di Paola: None declared, Davide Gatti: None declared, Giuseppe Girasole: None declared, Andrea Giusti: None declared, Stefano Gonelli: None declared, Monica Manfredini: None declared, Maurizio Muratore: None declared, Ranuccio Nuti: None declared, Paola Pisan: None declared, Laura Quarta: None declared, Ombretta Viapiana: None declared, Abeoni, Amgen, Janssen-Cilag, Mundipharma, Pfizer, Giuseppe Girasole: None declared, Andrea Giusti: None declared, Stefano Gonelli: None declared, Monica Manfredini: None declared, Maurizio Muratore: None declared, Ranuccio Nuti: None declared, Paola Pisan: None declared, Laura Quarta: None declared, Ombretta Viapiana: None declared, Abeoni, Amgen, Eli Lilly, Sanofi Genzyme