Spondyloarthritides – etiology, pathogenesis and animal models

FR10353 MISREGULATION OF BMP/TGFß SHEDS LIGHT ON THE PATHOGENICITY OF HLA-B27 IN Spondyloarthritides

Benjamin Grandon1, Aurée Rincheval, Nadège Jah, Jean-Marc Corsi, Luiza M. Araujo, Simon Glatigny, Delphine Roche, Gilles Chiochbia, Isabelle Guénael, Sébastien Gaumer, Maxime Breban.

Background: The class I MHC allele, HLA-B27 is the main genetic factor predisposing to ankylosing spondylitis (AS) and spondyloarthritis (SpA), a group of osteo-articular disorders combining inflammation with ossification. Until now, hypotheses to explain such striking association discovered 45 years have speculated either on the presentation of particular peptides to CD8+ T cells or on aberrant behaviors of the HLA-B27 molecule independent of its antigen presenting function, including slow folding and homodimers formation.

Objectives: To unravel aberrant function(s) of HLA-B27 independent of antigen presentation that may explain its pathogenicity.

Methods: Drosophila transgenic for SpA-associated HLA-B*27:04 or HLA-B*27:05 or non-SpA-associated HLA-B*07:02, alone or in combination with human β2-microglobulin (β2m) were produced. Genetic interaction tests were used to identify altered pathway(s). Protein-protein interactions were evidenced by proximity ligation assay. Phosphorylation of Smad2/3 was tested on CD4+ T cells from HLA-B27+ SpA patients and HLA-B27- healthy controls (6-10/group) by PhosFlow.

Results: Drosophila transgenic for HLA-B*27:04 or HLA-B*27:05 but not for control HLA-B*07:02 allele, in the presence of β2m that allows expression of well-folded HLA-B molecules at the cell surface, developed a Drosophila phenotype. This was due to a disturbance of BMP signaling by HLA-B*27:02m which repressed Saxophone (Sax) BMP type I receptor (BMPR1) function, resulting in widening of phosphorylated Mad, the Drosophila receptor-mediated Smad, gradient, and increased expression of its target genes dpp and cld. Consistently, HLA-B*27:02m well-folded conformers co-localized with Sax at the surface of Drosophila cells and also with Sax mammal ortholog ALK2, on immune cells from SpA patients. As predicted, given that Sax orthologs ALK1 and ALK2 are known to exert antagonistic function on TGFβ/BMP signaling, we found heightened p-Smad in response to TGFβ or Activin A in CD4+ T cells from HLA-B27+ SpA patients (p<0.05).

Conclusion: The pathogenic role of HLA-B27 in SpA may result from a TGFβ/BMP signaling misregulation due to specific antagonistic interaction with ALK1/ALK2 BMPR1, at the crosstalk between inflammation and ossification. Interestingly, ALK2 mutations are responsible for the rare mendelian disorder, Fibrohypoplasia Ossiflans Progresiva that mimics AS (Ref).

REFERENCES:


Disclosure of Interests: Benjamin Grandon: None declared, Aurée Rincheval: None declared, Nadège Jah: None declared, Jean-Marc Corsi: None declared, Luiza M. Araujo: None declared, Simon Glatigny: None declared, Delphine Roche: None declared, Gilles Chiochbia: None declared, Isabelle Guénael: None declared, Sébastien Gaumer: None declared, Maxime Breban Grant/research support from: Pfizer, UCB, Novartis, MSD, Consultant for: UCB


FRI0354 ASSESSING THE ROLE OF TENDON-T CELL INTERACTIONS IN THE DEVELOPMENT OF CHRONICITY IN Spondyloarthritides

Emma Garcia-Melchor, Giacomo Cataro, Lindsay AN Crowe, Michael Mclean, James H. Reilly, Iain McInnes, Moedd Alkba, Neal L. Millar, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Orthopaedic Surgery, Queen Elizabeth University Hospital Glasgow, Glasgow, United Kingdom

Background: Enthesitis is a hallmark of spondyloarthropathies[1], with mechanical stress or damage in the tendon being proposed as a trigger for the development of inflammation at the enthesis that propagates to the synovial compartment through what has been termed "synovio-enthesial complex"[2]. Increasing evidence supports the role that stromal cells play in the shift of the inflammatory process towards chronicity promoting T cell migration, retention and survival[3]. Therefore, we hypothesize that after tendon damage the crosstalk between stromal and immune compartments contributes to the development of chronic inflammation.

Objectives: We aimed to assess the effect of tendon stromal cells (tenocytes) on T cell migration and activation and the impact of these activated T cells on the stroma.

Methods: Tenocytes were explanted from tissue obtained from anterior cruciate ligament (ACL) reconstructions. The effect of damage on tenocytes after stimulation with conditioned media from tendon explants or IL-1ß was evaluated by qPCR. A transwell membrane system was used to test the impact of conditioned media from tenocytes on T cell migration. T cells and tenocytes were co-cultured with or without the presence of IL-1ß, from tenocytes induced T cell migration. Co-cultures of tenocytes and T cells resulted in activation of T cells that was contact dependant. In turn, these activated T cells upregulated the production of inflammatory mediators in tenocytes and increased the COL3/ COL1 ratio.

Conclusion: Our results support a communication between the stromal and immune compartment within the tendon that could be involved in the progression towards chronicity in the context of spondyloarthritides. Following damage, tendon stromal cells are able to induce the recruitment of T cells, that once enter the tissue interact with the stroma. Stromal cells are then further activated to produce inflammatory cytokines and chemokines that amplify and maintain this inflammatory response.

REFERENCES:


Disclosure of Interests: Emma Garcia-Melchor: None declared, Giacomo Cataro: None declared, Lindsay AN Crowe: None declared, Michael Mclean: None declared, James H. Reilly: None declared, Iain McInnes Grant/research support from: AstraZeneca, Celgene, Compugen, Novartis, Roche, UCB Pharma, Consultant for: AbbVie, Celgene, Galvani, Lilly, Novartis, Pfizer, UCB Pharma, Moedd Alkba: None declared, Neal L. Millar: None declared