RESULTS OF A SYSTEMATIC LITERATURE REVIEW INFORMING THE 2018 UPDATE OF THE EULAR RECOMMENDATIONS FOR THE MANAGEMENT OF LARGE VESSEL VASCULITIS: EVIDENCE TO GUIDE THE MANAGEMENT OF GIANT CELL ARTERITIS

Sara Moré1, Ana Filipa Agueda2, Raashid Luqmami4, Frank Buttgereit5, Maria Córdovado6, Christian Dejaco7, Alfred Mahá8, Cristina Ponte9, Carlo Salvatani10, Wolfgang A. Schmidt11, Bernhard Hellmich12,13,14,15

1Hospital Germans Trias i Pujol, Hospital Sant Joan de Reus, Badalona, Spain; 2Hospital Germans Trias i Pujol, Hospital Universitari La Fe, Valencia, Spain; 3Hospital Germans Trias i Pujol, Hospital de Bellvitge, Badalona, Barcelona, Spain; 4Hospital Germans Trias i Pujol, Hospital Universitari de la Ribera, Mataró, Barcelona, Spain; 5Institut für Physiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; 6Cambridge Institute for Medical Research, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom; 7Musculoskeletal Sciences, Oxford, United Kingdom; 8Charité University Medicine Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; 9University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford, United Kingdom; 10University of Barcelona. Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Vascularis Research Unit, Hospital Clinic, Barcelona, Barcelona, Spain; 11South Tyrol Health Trust, Hospital of Bruneck, Department of Rheumatology, Bruneck, Italy; 12Hospital Saint Louis, Paris, France; 13Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Department of Rheumatology, Lisbon, Portugal; 14Azienda USL IRCCS di Reggio Emilia and University of Modena and Reggio Emilia, Department of Rheumatology, Reggio Emilia, Italy; 15Immanuel Krankenhaus, Klinik für Innere Medizin, Rheumatologie und Klinische Immunologie Berlin-Buch, Berlin, Germany; 16Akademisches Lehrkrankenhaus der Universität Tübingen, Klinik für Innere Medizin, Rheumatologie und Immunologie, Vaskulitis-Zentrum Süd, Medius Kliniken, Kirchheim-unter-Teck, Germany

Background: The latest EULAR recommendations for the management of large vessel vasculitis (LVV) were published in 2009 (1). Since then, imaging has become a reliable diagnostic tool and new therapeutic options are available for giant cell arteritis (GCA), supporting the need to update the recommendations.

Objectives: To analyse the current evidence for the management (diagnosis/monitoring and treatment) of LVV, respectively, to inform the 2018 update of the EULAR recommendations.

Methods: A systematic literature review (SLR) dealing with diagnosis/monitoring and treatment strategies for LVV, respectively, was performed. Medline, Embase and Cochrane databases were searched from inception until 31st December 2017. Evidence on imaging was included in light of recently published EULAR recommendations (2). We reviewed data relevant to GCA. Level of Evidence (LoE) was assessed in accordance with the 2009 Oxford Centre for Evidence-based Medicine guidelines.

Results: We identified 283 papers from the SLR. The implementation of a fast-track approach to diagnosis significantly lowered the risk of permanent visual loss compared to GCA. Level of evidence (LoE), was assessed in accordance with the 2009 Oxford Centre for Evidence-based Medicine guidelines.

Conclusion: Results from a SLR confirmed the importance of a prompt diagnosis and rapid initiation of GC therapy. Patients with GCA are at an increased risk for GC-related comorbidities. MTX and TCZ can reduce GC exposure and relapse rates. There are yet no high-quality data to guide monitoring and duration of treatment in GCA.

REFERENCES:

Disclosure of Interests: Sara Monti: None declared, Ana Filipa Agueda: None declared, Raashid Luqmami Grant/research support from: Roche, Pfizer, MSD, GSK, Frank Buttgereit: None declared, Maria Córdovado: Grant/research support from: Kiniksa Pharmaceuticals, Consultant for: Roche, GSK, Janssen, Abbvie, Speakers bureau: Boehringer-Ingehelm, Pfizer; Christian Dejaco: Speakers bureau: MSD, Pfizer, UCB, Abbvie, Roche, Novartis, Lilly, Cemegene, Merck, Sandoz, Alfred Mahr Consultant for: Chugai Pharma France, Speakers bureau: Roche, Carlo Salvatani Grant/research support from: Roche, Christian Depaco: Speakers bureau: Roche, Carlo Salvatani Grant/research support: Roche, Pfizer, Lilly, Roche, Novartis.

EFFICACY OF EOSINOPHILIC GRANULOMATOSIS WITH POLYANGIITIS TREATMENTS ACCORDING TO THE TYPE OF MANIFESTATIONS BASED ON ANALYSIS OF 636 PATIENTS

Matthias Papo1, Renato A. Sinico1, Vítor Teixeira2, Maria-Letizia Urban3, Juliane Maharold4, Sara Moret5, Ouliya Cassone6, Franco Schiavon8, Benjamin Seeliger4, Thomas Neumann9, Matthieu Groh12, David Jayne3, Benjamin Terrier4, French Vasculitis Study Group, EGPA European Collaborative Initiative, 1Internal Medicine, Paris, France, 2Internal Medicine and Surgery, Milan, Italy, 3Medicine, Cambridge, Italy, 4Experimental and Clinical Medicine, Florence, Italy, 5Internal Medicine, Kirchheim, Germany, 6Rheumatology, Pavia, Italy, 7Rheumatology, Reggio Emilia and Modena, Italy, 8Rheumatology, Padova, Italy, 9Respiratory Medicine, Hannover, Italy, 10Rheumatology, St. Gallen, Switzerland, 11Pneumology, Jena, Germany, 12Internal Medicine, Suresnes, France, 13Nephrology, Parma, Italy, 14Internal Medicine, Dijon, France, 15Internal Medicine, Lyon, France

Background: Eosinophilic granulomatosis with polyangiitis (EGPA) (Churg–Strauss) is a small-vessel necrotizing vasculitis characterized by blood and tissue eosinophilia and asthma. Glucocorticoids (GCs) represent the treatment cornerstone. So far, EGPA management has been based on conventional immunosuppressants, but GC-dependence remains frequent. Currently, therapies targeting B cells and interleukin-5 are described, but data on large cohorts are lacking.

Objectives: This study aimed to describe therapeutic management and efficacy of treatments in EGPA patients.

Methods: We set up a multicenter European cohort that included 636 EGPA patients. Treatments used, complete remission rates and vasculitis relapse-free survival were recorded. Complete remission was defined as absence of vasculitis relapse and prednisone dose ≤5 mg/d at last follow-up. Efficacy to treat GC-dependent asthma/ENT signs was defined as the absence of asthma/ENT symptoms and prednisone dose ≤0.75 mg/d within the 6 months after initiation.

Results: For induction, cyclophosphamide (CYC) was the most frequently prescribed immunosuppressant (36.2%), more often in patients with FFS ≥1 (P = 0.0001). GCs alone were used in 37.3%, azathioprine (AZA) in 14.4% and methotrexate (MTX) in 6.2%. No difference was found in the 10-years overall survival between patients with FFS = 0, FFS = 1 and FFS ≥2. Complete remission rates were similar between conventional immunosuppressants (CYC, AZA or MTX) and GCs alone. Vasculitis relapse-free survival was also similar between CYC, AZA or MTX and GCs alone. Similar results were observed for first vasculitis relapse treatments. During follow-up, GC-dependent asthma and/or ENT manifestations were treated with AZA (40%), MTX (25%), mycophenolate mofetil (16%), rituximab (RXT) (21%), CYC (19%), cyclosporine (6%), oralizumab (5.9%) and mepolizumab (5.5%), allowing GC-tapering ≤0.5mg/d in 23%, 31%, 17%, 43%, 5%, 71% and 50%, respectively. Conventional immunosuppressants were mostly used in first and second line, while eosinophil-targeted biotherapies were used in 4th or 5th lines.

Conclusion: In EGPA patients, the response to conventional immunosuppressants, in addition to GCs, is often disappointing compared to GCs alone, without clear benefit on complete remission rates and relapse-free survival. In contrast, notwithstanding a small number of treated patients, eosinophil-targeted therapies seemed promising to treat asthma and/or ENT manifestations.

Disclosure of Interests: Matthias Papo: None declared, Renato A. Sinico: None declared, Vítor Teixeira: None declared, Maria-Letizia Urban: None declared, Juliane Maharold: None declared, Sara Monti: None declared, Giulia Cassone: None declared, Franco Schiavon: None declared, Benjamin Seeliger: None declared, Thomas Neumann: None declared, Claas Krogel: None declared, Matthieu Groh: None declared, Chiara Marvisi: None declared, Maxime Samson: None declared, Thomas Barba: None declared, David Jayne Grant/research support from: David Jayne has received research grants from Chemocentryx, GSK, Roche/Genentech and Sanofi-Genzyme. He has received consultancy fees from Astra-Zeneca, Boehringer-Ingelheim, Chemocentryx, Chugai, GSK, Infra-RX, Insmed and Takis, inc. Consultant for: Eli Lilly and Company, Roche, Abbvie, Jean-Emmanuel Kahn: None declared, Bernard Bonnotte: None declared, Cécile-Audrey Durel: None declared, Xavier Puéchal: None declared, Luc Mouthon: None declared, Loïc Guillin: None declared, Giacomo Emmi: None declared, Augusto Vaglio: None declared, Benjamin Terrier: None declared.


ENDOTHELIN-1 PLASMA LEVELS IN PATIENTS WITH SYSTEMIC NECROTIZING VASCULITIS (SNV)

Lubov Petyelvenko1, Olek larenenko1, Kateryna larenkenko2, Bogomolets National Medical University, The Department of Internal Medicine, Kyiv, Ukraine; 1Oleksandrivska City Clinical Hospital, The Laboratory Department, Kyiv, Ukraine

Background: Inflammatory eye disease is described in 50% to 60% of patients with ANCA-positive vasculitis and in 10–20% of patients with polyarteritis nodosa, and for 8% to 16% of patients it is an initial manifestation [1, 2]. Endothelin-1 (ET-1) as a potential participant in the regulation of intraocular pressure, ocular blood vessel tone, and iris smooth muscle tone, suggesting that it may be an important mediator in the development of ocular pathologic conditions [3]. The lower ET-1 plasma levels were found in the optic neuropathy [4]. Objectives: To provide a more complete description of the ocular disease in patients with systemic necrotizing vasculitis (SNV), to evaluate the serum level of ET-1 in patients with SNV with and without eye involvement.

Methods: The study included 36 patients with SNV (polyarteritis nodosa - 8, ANCA - associated vasculitis - 28) and healthy controls (n=26). The 17 patients with SNV had ophthalmological manifestations. Clinical activities of patients were calculated according to the Birmingham Vasculitis Activity Score (BVAS). The serum levels of ET-1 (pmol/L) were determined by immunoassay analysis using the kits of Biomedica. The outcomes of this study were the differences in marker levels between SNV patients with and without eye involvement and healthy controls estimated by analysis of the absolute changes in marker levels and the areas under receiver operating characteristic (ROC) curves (AUC).

Results: The ocular manifestation of patient with SNV included episcleritis (n=10), anterior uveitis (n=3), ischaemic optic neuritis (n=3) and occlusive retinal vasculitis (n=1). All patients had active disease (BVAS>11). There were no significant differences of BVAS, ESR and CRP between SNV patients with and without eye involvement. In 14% patients with SNV eye involvement was an initial manifestation. The level of ET-1 (M ± σ) in group of SNV patients with eye involvement (n=17) was 0.28 ± 0.13 and did not differ significantly from the control group (0.27 ± 0.10, p>0.05). At the same time, in patients without eye involvement (n=19), it was significantly elevated (0.36 ± 0.34) compared with control group and with group of SNV patients with eye involvement (p < 0.001). ROC analysis showed that the AUC for ET-1 is 0.50±0.10 (p=0.98), which indicates not acceptable capacity for ET-1 differentiate groups of patients with ocular involvement and patients without ocular involvement (specificity - 59%, specificity - 57%).