effect profile compared to methotrexate at doses used in oncology.3) Hence this study aimed to clarify why low dose methotrexate carried a risk of hair fall.

Objectives: Determine the mean change in number of hair strands obtained by the hair pull test at the start of the trial and at 3 weeks, 2 months and 3 months among rheumatoid arthritis patients on methotrexate in comparison to healthy controls.

Methods: After ethics committee approval and informed consent, consecutive patients attending a rheumatology OPD and who were planned to be initiated on methotrexate were enrolled into the study. Patient relatives, hospital staff and healthy blood donors were recruited as healthy controls.

Results: During the 6 month enrollment phase 98 patients and 82 controls were enrolled. Patients were 85% female with a mean age of 48.1 +13.4. Rheumatoid factor positivity was seen in 59.1%. Average duration of the disease was 9.6 months (Range 15 days to 3 years) Patients were started on 10 to 15 mg of methotrexate which was escalated at the 1st visit at 3 weeks. Only 3 patients had received prior DMARDs. Controls also constituted predominantly women (90%) with an slightly lower average age of 44.4 +10.9 years. The mean no of hair in the hair pull test at the start of the study was 1.21+2.01 (range 0.12) in patients vs 0.84 +1.25 (range 0-4) in controls. The mean change in the hair count in the same test repeated at 3 weeks, 2 months and 3 months was -0.29, -0.31 & -0.26 respectively (i.e. reduction in hair fall). In comparison healthy controls showed values of 0.31,0.11, 0.1 at the same follow up points. There was no statistical significant difference in the proportion of patients having more than 5 hairs in the test at the onset of treatment vs healthy controls or during any point during the follow up period.

Conclusion: Low dose methotrexate did not appear to predispose to increased hair fall during this short term study. In fact many patients showed reduction in the number of hair in the hair pull test on methotrexate.

REFERENCES:

Disclosure of Interests: Dr Deena Patil and Dr Sunaina Hameed for help in designing the study

Disclosure of Interests: Sharath Kumar Consultant for: Intas, Speakers bureau: JanssenJanssen, Bristol Meyers & Squibb, Pfizer, Dhivya Loka

Acknowledgement: Dr Deena Patil and Dr Sunaina Hameed for help in designing the study

FR0158 COMPARISON OF THE EFFICACY AND SAFETY OF TOFACITINIB AND ADALIMUMAB IN PATIENTS WITH ACTIVE RHEUMATOID ARTHRITIS: A BAYESIAN NETWORK META-ANALYSIS OF RANDOMIZED CONTROLLED TRIALS

Young Ho Lee, Gwan Gyu Song, Korea University, Rheumatology, Seoul, Korea, Rep. of (South Korea)

Background: A class of targeted synthetic disease-modifying anti-rheumatic drugs (tsDMARDs) has emerged as an alternative treatment option for rheumatoid arthritis (RA). Tofacitinib is an orally administered JAK (Janus kinase) inhibitor with functional cellular specificity for JAK-1 and JAK-3 over JAK-2 and upadacitinib, a new JAK inhibitor, has been engineered to confer greater selectivity for JAK1 than for JAK2, JAK3, and Tyk2.

Objectives: The aim of this study is to assess the relative efficacy and safety of tofacitinib and upadacitinib at different doses were assessed in patients with RA with an adequate response to conventional synthetic (cs) or biologic (b) DMARD.

Methods: We performed a Bayesian network meta-analysis to combine direct and indirect evidence from randomized controlled trials (RCTs) to examine the efficacy and safety of tofacitinib and upadacitinib in combination with methotrexate (MTX) in RA patients with an inadequate cs- or b-DMARD response.

Results: Nine RCTs including 5,794 patients met the inclusion criteria. There were 15 pairwise comparisons including 10 direct comparisons of six interventions. Upadacitinib 15 mg+MTX and upadacitinib 30 mg+MTX were among the most effective treatments for active RA with an inadequate cs- or b-DMARD response, followed by tofacitinib 10 mg+MTX, tofacitinib 5 mg+MTX, and adalimumab 40 mg+MTX. Ranking probability based on the surface under the cumulative ranking curve (SUCRA) indicated that upadacitinib 15 mg+MTX and upadacitinib 30 mg+MTX had the highest probability of being the best treatment in terms of the ACR20 response rate (SUCRA = 0.820, 0.762), followed by tofacitinib 10 mg+MTX (SUCRA = 0.623), tofacitinib 5 mg+MTX (SUCRA = 0.424), adalimumab+MTX (SUCRA = 0.371), and placebo+MTX (SUCRA = 0.001). No significant differences were observed in the incidence of serious adverse events after treatment with tofacitinib+MTX, upadacinib+MTX, adalimumab+MTX, or placebo+MTX.

Conclusion: In RA patients with an inadequate response to cs- or b-DMARDs, upadacitinib 15 mg+MTX and upadacitinib 30 mg+MTX were the most efficacious interventions and were not associated with significant risks of serious adverse events.

REFERENCES:

Disclosure of Interests: None declared