CHROMATIN INTERACTIONS IN NOVEL CELL TYPES REVEAL PARK7 AND ERRFI1 AS PUTATIVE CAUSAL GENES IN THE SUSCEPTIBILITY TO PSORIATIC ARTHRITIS

1Versus Arthritis Centre for Genetics and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom, Manchester, United Kingdom; *NHRI Manchester Biomedical Research Centre, Manchester University Foundation Trust., Manchester, United Kingdom; "Faculty of Biology, Medicine and Health University of Manchester, Manchester, United Kingdom; 5Dermatology Centre, Salford Royal NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom

Background: One of the major tasks post-GWAS is to link disease associated single nucleotide polymorphisms (SNPs) to their causal genes. Unexpectedly the vast majority of disease associated SNPs lay outside protein coding regions of the genome, often in gene regulatory regions, known as enhancers. These enhancers operate by physically interacting with their target genes, often over long distance, and often skipping genes. We, and others, have demonstrated how these enhancer interactions can change with different cell type and stimulatory conditions. In psoriatic arthritis, as with all complex diseases, there are a large number of genetic loci implicated in susceptibility to disease, but relatively few of these regions have confirmed causal genes.

Objectives: Map disease associated enhancers to potential causal genes through physical chromatin interactions in relevant, novel cell types.

Methods: We used Capture HiC (CHi-C) technology to map enhancer interactions in both a keratinocyte cell line (HaCaT) and a T cell line (MyLa) in biological duplicate. We generated Hi-C libraries and enriched them for autoimmune-associated GWAS loci using RNA baits. The resultant CHi-C libraries underwent high-throughput sequencing generating 75 bp paired-ends. Significant interactions were detected using CHICAGO.

Results: A region on chromosome 1p36 demonstrated markedly differential interactions between the T cell line (MyLa) and the skin cell line (HaCaT). Here the enhancer region containing SNPs associated with PsA demonstrated a strong interaction with both the PARK7 and ERRFI1 genes in HaCaT cells, absent in the MyLa cell line (fig 1). These interactions were contained within a functionally relevant topological activation domain (TAD) boundary, enriched for enhancer to promoter links. Bioinformatic analysis demonstrated how a SNP highly correlated with the PsA lead variant is found within an open, active region of chromatin in the HaCaT cell line, shifting the priority from the (statistical) lead variant (rs11121129) to rs11121131 – demonstrating the value of this type of analysis (fig 2).

Conclusion: A region associated with PsA on chromosome 1p36, previously annotated with the TNFSF9/ERRFI1/SLC45A1 gene, makes robust interactions with the PARK7 and ERRFI1 genes, both strong candidates for causality in disease. An associated variant, within a cell type relevant enhancer, is currently being targeted with genome editing technology (CRISPR) to assess its potential for causality and possible mechanism.

Disclosure of Interests: None declared

CHROMATIN CONTACTS AND TRANSCRIPTOMICS IN CD4+ T-CELLS REVEAL GENES IMPLICATED IN RHEUMATOID ARTHRITIS

Vasanthi Priyadarshini Gaddi1, Amanda Migator1, James Ding2, Nadia Iqbal2, Cheruth Shi3, Theoni Katopodi4, Mariabel Acosta-Herrera5, Sofia Vargras5, Kate Duftus6, Anna Yarrow7, Enrique Rayas8, Javier Martin Ibanez9, Paul Martin1, Olivia Orreco10.

1University of Manchester, Manchester, United Kingdom; 2Hospital de Parapata y Biomedicina Lopez-Neyra, CSIC, Granada, Spain; 3Hospital Clínico de Granada, Departamento de Rheumatology, Granada, Spain

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of synovial joints. RA is a clinically heterogeneous disease and treatment response varies between individuals. The pathogenesis of RA is not completely understood yet, but it has been

Disclosure of Interests: None declared

REFERENCES:
shown that the largest factor influencing disease susceptibility is genetics. Genome-wide association studies have successfully characterized genetic variants that are associated with RA, with the vast majority of them mapping to non-coding regulatory elements. Understanding the mechanisms by which this phenomenon leads to disease is essential to translate results from genetic association studies to the clinic.

Objectives: There is evidence showing that autoimmune diseases are the consequence of erroneous wiring of the regulatory circuitry between enhancers and their target genes. The aim of this study is to characterize non-coding regions containing RA-associated variants, in order to determine the genes and pathways by which these regions act to increase the risk of disease.

Methods: We isolated CD4+ T-cells from blood obtained from RA patients. We stratified patients in two subgroups, high disease activity (DAS28>5.1, n=18) and low disease activity (DAS28<3.2, n=33). All samples were genotyped using Illumina Infinium Exome-24 v1.0 BeadChip arrays. RNA-Seq Libraries were generated for matching RNA samples using the Lexogen QuantSeq Library Prep kit and sequenced on an Illumina NextSeq500. For a subset of 6 samples (3 high disease activity and 3 low disease activity patients), capture Hi-C was performed to characterize chromatin interactions between all RA associated loci and their potential target genes.

Results: We observed numerous chromatin interactions between RA variants and potential causal genes. Preliminary results show that a number of disease-associated SNPs interact with compelling candidate genes situated several megabases away. Whilst some of these chromatin interactions are common to both patients groups, subsets of them are specific to each disease subgroup, which are correlated with differential gene expression.

Conclusion: These results suggest that there might be different biological pathways contributing to disease in RA patients with inactive disease compared to patients with high disease activity.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2019-eular.3211

FR10006

PROTECTIVE ROLE OF THE PROPROPRTIE CONVERTASE SUBTILISIN/KEXIN TYPE 9 (PCSK9) mRNA EXPRESSION AND PCSK9 SERUM LEVELS IN RA PATIENTS

Sara Pemurto-Martínez1, Fernando Genre1, Verónica Pulito-Cueto1, Alfonso Corrales1, Javier Lorca3, Verónica Mijares1, Leticia Lera-Gómez1, Virginia Portilla1, Iván Ferraz-Amaro3, Santos Castañeda4, Oreste Guallio5, Javier Alfonso Corrales1, Javier Lorca3, Verónica Mijares1, Leticia Lera-Gómez1, Virginia Portilla1, Iván Ferraz-Amaro3, Santos Castañeda4, Oreste Guallio5, Javier Martin Ibanez2, Ricardo Blanco1, Raquel López-Mejías1, Miguel A. González-Gay1, 2

1Department of Rheumatology, Reus, Spain; 2Hospital Universitari Sant Joan, Department of Cardiology, Reus, Spain; 3Rheumatology Department, Hospital Universitario de La Princesa, IIS-Princesa, Madrid, Spain; 4SERGAS (Servicio Galego de Salud) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Hospital, Santiago de Compostela, Spain; 5Instituto de Paratología y Biomedicina “López-Neyra”, CISC, PTS Granada, Granada, Spain; 6School of Medicine, University of Cantabria, Santander, Spain

Background: RA is associated with the development of cardiovascular (CV) disease and subclinical atherosclerosis1. The presence of carotid plaques assessed by ultrasonography studies is a surrogate marker for subclinical atherosclerosis2. Proprotein convertase subtisin/kexin type 9 (PCSK9) is involved in the homeostasis of cholesterol, a traditional CV risk factor related to RA and atherosclerosis3, 4. PCSK9 polymorphisms can both increase and decrease the risk of CV disease in patients with arthritis5, 6. Moreover, PCSK9 levels have been also related with CV risk7. However, there is little information on PCSK9 in RA.

Objectives: To assess the role of several PCSK9 polymorphisms in RA and subclinical atherosclerosis in RA as well as to determine if these genes may influence the PCSK9 mRNA expression and protein levels.

Methods: Patients were selected as miRNA candidates for validation. Selected miRNAs were validated in independent serum samples from 214 RA patients (validation cohort) by studying its association with subclinical atherosclerosis measured by carotid intima-media thickness (cIMT). Plasma profile of miRNAs in the discovery study was analyzed using validated TaqMan Open Array miRNA panels which enables the quantification of 754 human miRNAs.

Results: Significant differences were found in the allele frequencies of PCSK9 rs2495477 between RA patients and controls were found (minor allele OR=0.55, 95% CI=0.34-0.89, p<0.01). A significant association between minor allele of rs2495477 and carotid plaques was also disclosed in RA patients (OR=0.72, 95% CI=0.56-0.92, p=0.01). PCSK9 levels were significantly decreased in RA patients carrying rs2495477 minor allele compared to controls (97.8 ± 104.9 vs 235.8 ± 93.5 ng/mL, p<0.001). None of the five PCSK9 polymorphisms influenced on its expression.

Conclusion: Our study showed for the first time that PCSK9 rs2495477 confers protection against RA susceptibility and the development of subclinical atherosclerosis in RA patients. Furthermore, rs2495477 decreased PCSK9 serum levels in RA that may be crucial to control the disease.

REFERENCES:

Disclosure of Interests: Acknowledgement: Study supported by ERDF and P11/00525 (ISCIII). Personal funds, SR-M: RD16/0100009 (ISCIII-ERDF); FG: Sara Borell fellowship CD15/00095 (ISCIII-ESF); VP-C: PREVAL18/01 (IDIVAL); VM and RL-M: Miguel Servet type IP16/00033 (ISCIII-ERDF,ISCIII-ESF).

Disclosure of Interests: Sara Pemurto-Martínez: None declared, Fernando Genre: None declared, Verónica Pulito-Cueto: None declared, Alfonso Corrales: None declared, Javier Lorca: None declared, Verónica Mijares: None declared, Leticia Lera-Gómez: None declared, Virginia Portilla: None declared, Iván Ferraz-Amaro: None declared, Santos Castañeda Consultant for: Amgen, BMS, Pfizer, Lilly, MSD, Roche, Sanofi, UCB, Oreste Guallio: None declared, Javier Martin Ibanez: None declared, Ricardo Blanco: None declared, Raquel López-Mejías: None declared, Miguel A. González-Gay Grant/research support from: Prof. MA Gonzalez-Gay received grants/research supports from Abbvie, MSD, Jansen and Roche., Speakers bureau: Consultation fees/participation in company sponsored speaker’s bureau from Pfizer, Lilly, Sobí, Celgene, Novartis, Roche and Sanofi.

DOI: 10.1136/annrheumdis-2019-eular.2383

FR10007

IDENTIFICATION AND VALIDATION OF PLASMA MICRO-RNA 425–5P AND –451A AS MICRO-RNAS ASSOCIATED WITH CARDIOVASCULAR DISEASE RISK OBSERVED IN RHEUMATOID ARTHRITIS PATIENTS

PAREDES SILVIA1, Delia Taverner2, Raimon Ferre3, Josep Maria Alegret4, Lluis Masana2, Joan Carles Valle4, 5Hospital Universitari Sant Joan, Department of Rheumatology, Reus, Spain; 2Hospital Universitari Sant Joan, Department of Rheumatology, Reus, Spain; 3Hospital Universitari Sant Joan, Internal Medicine, Reus, Spain; 4Hospital Universitari Sant Joan, Department of Cardiology, Reus, Spain; 5Rovira i Virgili University, Lipid Research Unit, Reus, Spain

Background: Cardiovascular disease (CVD) risk is increased in Rheumatoid arthritis (RA) patients, and therefore, improved approaches for its early detection are needed. An accelerated atherosclerosis is considered the cause of the increase CVD risk. As microRNAs (miRNAs) are increasingly recognized as critical regulators in atherosclerosis and possess excellent stability in plasma, this study focused on using miRNAs as noninvasive CVD risk biomarkers in RA patients.

Objectives: To identify plasmatic miRNAs in RA patients that can facilitate earlier diagnosis of CVD and provide insight regarding the increase risk for CVD observed in these patients.

Methods: A discovery and validation studies were performed. To discover miRNAs candidates, we first compared plasmatic profiles of 754 miRNAs in 7 RA patients without CVD, in 7 patients with acute myocardial infarction (AMI) but without RA, and in 7 healthy controls matched for age and for classical CV risk factors. miRNAs commonly expressed in the two group of patients but differentially expressed from the controls were selected as miRNA candidates for validation. Selected miRNAs were validated in independent serum samples from 214 RA patients (validation cohort) by studying its association with subclinical atherosclerosis measured by cIMT. Plasma profile of miRNAs in the discovery study was analyzed using validated TaqMan Open Array miRNA panels which enables the quantification of 754 human miRNAs.