the marked decrease in damage over time and the more pronounced decline in the Biologic era (Figure 1).

Conclusion: Our study provides evidence of the remarkable prognostic improvement obtained with the recent therapeutic advance in JIA.

REFERENCES:

Disclosure of Interests: Gabriella Giancane: None declared, Valentina Muratore: None declared, Valentina Marzetti: None declared, Neus Quilis Martí: None declared, Belén Serrano Benavente: None declared, Francesco Bagnasco: None declared, Alessandra Alioni: None declared, Adele Cívino: None declared, Lorenzo Quarulli: None declared, Alessandro Consolaro Grant/research support from: Abbvie, Pfizer, Angelo Ravelli Grant/research support from: Angelini, AbbVie, Bristol-Myers Squibb, Johnson & Johnson, Novartis, Pfizer, Reckitt Benkeris, and Roche, Consultant for: Angelini, AbbVie, Bristol-Myers Squibb, Johnson & Johnson, Novartis, Pfizer, Reckitt Benkeris, and Roche.

Figure 1. Trend in disease damage throughout methotrexate and biologic era.

THU0656 IMMUNE CHECKPOINT INHIBITORS IN PATIENTS WITH CANCER AND RHEUMATOLOGIC DISEASES: A SYSTEMATIC REVIEW OF THE LITERATURE

Noha Abdel-Wahab1,2, Houssein Safa3, Maria A. Lopez-Olivo4, Adi Diab3, Maria Suarez-Almazor1.
1. University of Texas MD Anderson Cancer Center, Section of Rheumatology and Clinical Immunology, Houston, United States of America; 2. Faculty of Medicine, Assiut University Hospital, Department of Rheumatology and Rehabilitation, Assiut, Egypt; 3. University of Texas MD Anderson Cancer Center, Melanoma Medical Oncology, Houston, United States of America; 4. University of Texas MD Anderson Cancer Center, Section of Rheumatology and Clinical Immunology, Houston, United States of America

Background: Immune checkpoint inhibitors (ICI) have resulted in unprecedented advances in the treatment of cancer, with remarkable survival benefits, unseen with traditional treatment. While the benefits of ICI have been clearly documented, a myriad of immune-related adverse events (irAEs) have been recognized in multiple organs and systems, secondary to persistent activation of the immune system.

Objectives: To systematically review the literature and provide an updated summary on adverse events associated with the use of ICI therapy in patients with cancer and rheumatologic diseases.

Methods: Five electronic databases were searched through 2018 with no restrictions. Articles were screened and selected by two independent investigators using a 2-step approach. Case reports, series, and observational studies describing patients diagnosed with rheumatologic disease prior to initiation of ICI for treatment of concomitant cancer were included.

Results: A total of 69 patients in 27 publications were identified. Median age was 65 (38-87) years; 50% were female; 90% had metastatic melanoma; and 64% were receiving anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) antibody. Rheumatoid arthritis was the most common in 64% (n=32). Other rheumatologic diseases included 16 spondyloarthropathy (7 psoriatic arthritis, 4 ankylosing spondylitis, 1 reactive arthritis, and 4 unspecified), 8 sarcoidosis, 6 vasculitis (3 eosinophilic granulomatosis with polyangiitis, and 1 with granulomatosis with polyangiitis), Behcet’s diseases, and polymyalgia rheumatica), 2 each with systemic lupus erythematosus and scleroderma, and 1 each with rheumatic fever, Sjögren’s syndrome, and myositis. Overall, 73% (n=50) had an adverse event after initiation of ICI; 33% (n=32) had an exacerbation of the underlying disease, and 55% (n=38) had de novo irAEs. Patients with active diseases at ICI initiation seemed to have more disease flare than those with inactive disease (61% vs. 29%; p < 0.05), while no differences were observed in de novo irAEs (36% vs. 39%). Patients with rheumatoid arthritis were reported to have more flares with anti-CTLA-4 antibody (63% vs. 33%), while those with spondyloarthropathy reported more flares with anti-programmed cell death 1 agents (63% vs. 29%); however numbers were small. Patients receiving immunosuppressive therapy at ICI initiation had fewer adverse events than those not receiving treatment (26% vs. 44%). Most flares and irAEs were managed with corticosteroids, and 13% required additional disease modifying anti-rheumatic drugs. Adverse events improved in 64% and did not require discontinuation of ICI therapy. In melanoma patients, disease control rate was 44%. In all patients, no treatment related mortality was reported.

Conclusion: About one third of patients with pre-existing rheumatologic autoimmune disease flared after receiving ICI therapy for treatment of cancer. However, flares and irAEs can often be managed and may not require discontinuation of cancer therapy. Prospective longitudinal studies are needed to evaluate potential differences among diseases and to determine optimal toxicity therapy while conserving antitumor immunity.

THU0657 ASSOCIATION OF DIET AND SPICES WITH TREATMENT OUTCOME IN ASIAN INDIAN PATIENTS WITH RHEUMATOID ARTHRITIS – A CROSS SECTIONAL STUDY

Harshini Aiy Shivalakumar1, Ramya Aithala1, L. Jayaseelan2, Debashish Danda1, Noha Abdel-Wahab1,2, Houssein Safa3, Maria A. Lopez-Olivo4, Adi Diab3, Harshini Alur Shivakumarm,1 Ramya Aithala1, L. Jayaseelan2, Debashish Danda1.
1. Christian Medical College, Clinical Immunology and Rheumatology, Vellore, India; 2. Christian Medical College, Biostatistics, Vellore, India

Background: Influence of diet on inflammation, specifically foods like fish oil, spices like turmeric, capsaicin, garlic etc. are reported in published literature. However, a well-designed study on this subject amongst Asian Indian patients is lacking.

Objectives: To analyze whether the type and quantity of intake of various food constituents, with particular reference to Indian spices, makes an impact on the control of disease activity in patients with Rheumatoid arthritis(RA).

Methods: Patients diagnosed as RA by the ACR 2010 criteria and receiving standard triple drug therapy in our clinic between June 2017 and June 2018, for at least one year were enrolled. Disease activity was assessed during the routine OPD visit. They were administered a food frequency questionnaire pertaining to the quality as well as quantity of food and spice intake. Analysis was done using multivariate logistic regression.

Results: A total of 400 patients were included with 96.75% females. 67.75% patients were in disease remission, 10% had mild disease activity and 22.25% moderate to high disease activity; only 18.09% were vegetarians and the rest consumed non-vegetarian food. Median age was 47.99years (SD 10.67); median duration of illness prior to presentation to our clinic was 7years (IQR 4.10); median ESR was 37mm/hr (IQR 23.52), median CRP was 5.54mg/L (IQR 2.04,12.4), and median DAS28CRP was 2.07/IQR 1.64,2.97. Patients with DAS28CRP of < 2.6 were compared with those >3.2. Statistically higher consumption of ginger, garlic, turmeric and coriander were noted amongst patients in remission. Similar results were obtained when patients with DAS28CRP of <1.4 were compared with DAS28CRP >5.1. Significant numerical differences were noted for intake of food constituents like wheat, total pulse, vegetables, fruit, milk and fish.
Table 1. Comparison between patients in remission with those having moderate/high disease activity

<table>
<thead>
<tr>
<th>Variables</th>
<th>OR (95% CI)</th>
<th>P - Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ginger</td>
<td>0.62 (0.47, 1.01)</td>
<td><0.001</td>
</tr>
<tr>
<td>Garlic</td>
<td>0.61 (0.46, 0.79)</td>
<td><0.001</td>
</tr>
<tr>
<td>Turmeric</td>
<td>0.63 (0.46, 0.73)</td>
<td><0.001</td>
</tr>
<tr>
<td>Jeera</td>
<td>0.75 (0.51, 1.09)</td>
<td>0.13</td>
</tr>
<tr>
<td>Coriander</td>
<td>0.59 (0.41, 0.83)</td>
<td>0.01</td>
</tr>
<tr>
<td>Pepper</td>
<td>0.82 (0.55, 1.21)</td>
<td>0.3</td>
</tr>
<tr>
<td>Chilli</td>
<td>0.69 (0.53, 0.90)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

. Multivariable logistic regression for the statistically significant variables

Conclusion: Higher consumption of Indian spices like ginger, garlic, turmeric and coriander were found to be associated with better control of disease activity and hence the inflammation, as evidenced by DAS28CRP in patients with Rheumatoid arthritis, receiving standard triple therapy.

REFERENCES:

Disclosure of Interests: None declared

THU0658

WHO IS AT RISK FOR PERSISTENT FATIGUE IN THE FIRST YEAR OF RA? CHARACTERISTICS OF PATIENTS WITH PERSISTENT FATIGUE IN THE FIRST YEAR BY SEX IN THE CANADIAN EARLY ARTHRITIS COHORT (CATCH)

Susan J Bartlett1 2, Orit Schiel3, Marie-France Valois4, Janet Pope5, Louis Bessette6, Carol Hitchon7, Carter Thorne8,9, Diane Tin10, Glen Hazlewood10, Gilles Boire11, Edward Keystone12, Vivian Bykerk13.

1McGill University, Center for Outcomes Research and Evaluation, Montréal, Canada; 2Johns Hopkins, Medicine, Baltimore, United States of America; 3University of Toronto, Toronto, Canada; 4McGill University, Montreal, Canada; 5Western University, London, Canada; 6Laval University, Quebec City, Canada; 7University of Manitoba, Winnipeg, Canada; 8Southlake Regional Health Center, Newmarket, Canada; 9Southlake Regional Health Center, Newmarket, Canada; 10University of Calgary, Calgary, Canada; 11University of Sherbrooke, Sherbrooke, Canada; 12Mt. Sinai Hospital, Toronto, Canada; 13Hospital for Special Surgery, Rheumatology, New York, United States of America

Background: While treat-to-target strategies can dramatically reduce RA inflammation, persistent fatigue is present in up to half of RA patients, and is an important unmet need. Proposed underlying causes include RA disease, cognitive/emotional/behavioral (CEB), and personal (health) factors.

Objectives: To identify risk factors for persistent fatigue at 12-months in men and women with ERA on immunomodulatory therapies.

Methods: Data were from patients enrolled in the Canadian Early Arthritis Cohort (CATCH) between 01-2007 and 03-2017 who met 1987 or 2010 ACR/EULAR RA criteria, had active disease treated with DMARDS, and had complete data on DAS28, BMI, and fatigue severity (0-10) over 12-months. Persistent fatigue was defined as fatigue >4 at baseline with <20% improvement at 12 months. Multivariable logistic regression was used to identify RA disease, CEB, and personal/health factors associated with persistent fatigue.

Results: Patients were mostly white (81%), female (71%) with a mean (SD) age of 54 (15), symptom duration of 6 (3) months, and BMI of 28.0 (6.1); 32% were obese (BMI>30). Women were generally younger, better educated, seropositive, and had greater disability, fatigue, depressive symptoms, and major stress in the past year (p<.05). 21% of women and 19% of men reported persistent fatigue.

Mean (SD) or N (%) Women Men p value
Age > High School education 52 (15) 99 (13) <0.0001
50 (15) 134 (26) <0.01
RA Disease
Symptom duration (month) 5.7 (3.0) 5.6 (2.9) 0.65
RF+ or ACPA+ 526 (58%) 177 (75%) <0.001
RSAS&8 (MDA/HDA vs. LDA/REM) 688 (31%) 272 (31%) 0.17
RSASS (96%) (94%) 0.17
Pain (0-10) 5.8 (2.8) 5.7 (2.8) 0.55
HAG-DI 1.1 (0.7) 1.0 (0.7) 0.02
Cognitive/Emotional/Behavioral (CEB)
Baseline fatigue (0-10) 5.6 (3.0) 4.9 (2.9) <0.01
Obese (BMI(30) 223 (31%) 93 (32%) 0.74
Depressive Symptoms (SF12 MCS <45.6) (53%) (56%) 0.0001
Major stress past year 401 (15%) 123 (43%) 0.0001
Personal/Health
Work (full/part time) 401 (149) 0.20
Rheumatoid Disease Comorbidity Index 1.1 (1.3) 1.3 (1.3) 0.06
OA or backpain 164 (57) 0.27
Fibromyalgia 20 (3%) 3 (1%) 0.09
Poor sleep 5.2 (3.2) 5.0 (3.3) 0.41

In multivariable regression that included all Table 1 variables, predictors of persistent fatigue in women were obesity (OR 1.7; 95% CI 1.1, 2.6), initial steroid use (OR 1.7; 95% CI 1.1, 2.7), seronegativity (OR 0.6; 95% CI 0.4, 1.0) and poor sleep (OR 1.1; 95% CI 1.0, 1.2). Obesity was the only significant predictor in men and was associated with a 2.4 times higher odds (95% CI 1.1, 5.1) of persistent fatigue at 1 yr. Other sociodemographic, RA characteristic, CEB and personal/health factors were not associated with persistent fatigue in either sex in multivariable models.

Conclusion: Obesity is common in ERA and a major determinant of persistent fatigue in women and men. In obese RA patients on guideline-based treatment, lifestyle interventions targeting weight loss may play an important role in reducing persistent fatigue that does not improve with RA treatment.

REFERENCES:

Disclosure of Interests: None declared

THU0658 WHO IS AT RISK FOR PERSISTENT FATIGUE IN THE FIRST YEAR OF RA? CHARACTERISTICS OF PATIENTS WITH PERSISTENT FATIGUE IN THE FIRST YEAR BY SEX IN THE CANADIAN EARLY ARTHRITIS COHORT (CATCH)