serological variables and reflected the uptake of opsonized SNEC by neutrophils in the blood.

Conclusion: SNEC ELISA allows for the sensitive detection of pathologically relevant autoantibodies in the serum of patients with SLE. The clearance of nuclear remnants by neutrophils enhances inflammatory responses supporting the role of clearance deficiency in the etiopathogenesis of SLE.

REFERENCES:

Disclosure of Interests: None declared

SP0175
POST-TRANSLATIONAL MODIFICATIONS OF ANTIBODIES: WHERE THERE'S SMOKE THERE'S FIRE
Rene Toes. Leiden University Medical Center, Rheumatology, Leiden, Netherlands

Rheumatoid arthritis (RA) is a prototype autoimmune disease, with the hallmark signs of synovial inflammation and the presence of autoantibodies. One of the most prominent examples of such autoantibodies are anti-citrullinated protein antibodies (ACPA), which are directed against a wide array of citrullinated proteins. The immune response to citrullinated proteins is a dynamic response that expands before the onset of disease and generates antibodies that are extensively glycosylated in the variable domain. This feature of ACPAs is remarkable and might be involved in the breach of tolerance to citrullinated proteins as well as function as an additional biomarker to predict disease onset in subjects at risk. Next to ACPA, it has become clear that the autoantibody response in RA extends towards several other modified proteins, such as proteins modified by carbamylation or acetylation. Carbamylation leads to the formation of homocitrulline. Structurally, homocitrulline greatly resembles citrulline but is one methylene group longer. In contrast, acetylation is mediated by intracellular acetyltransferases and is structurally less related to citrulline or homocitrulline. Although the presence of autoantibodies against these post-translationally modified proteins (Anti-Modified Protein Antibodies; AMPA) hallmark RA, at present, there is no conceptual framework explaining the concordant presence of different AMPA-responses in RA. In the context of this presentation, the latest insights into the development of humoral response against citrullinated-, carbamylated and acetylated proteins in relation to their role as biomarkers to predict the development of RA will be discussed.

Disclosure of Interests: Rene Toes Grant/research support from: Sanofi

SP0176
PATHOGENIC ANTIBODIES IN PHOSPHOLOPID SYNDROM
Sasa Cucnik. University Medical Center Ljubljana, Department of Rheumatology, Immunology Laboratory, Ljubljana, Slovenia

Antiphospholipid syndrome (APS) is prothrombotic systemic autoimmune disorder characterized with multisystem manifestation, most commonly venous and arterial thromboembolism and/or recurrent pregnancy loss. The varying clinical phenotype is associated with heterogeneity in the pathogenic antiphospholipid antibodies (aPL) that are central to the diagnosis of APS. According to the international consensus statement on classification criteria, APS is classified when persistently elevated levels of specific aPL such as lupus anticoagulant (LA), anti-cardiolipin (aCL) and anti-β2-glycoprotein I (anti-β2GPI) antibodies, are confirmed in addition to clinical manifestations (1, 2). The exact pathogenesis of APS is unknown, but aPL have been described to activate monocytes, neutrophils, dendritic cells and placental tissue (3). Despite the fact that many different proteins have been identified as being involved in the pathogenesis of APS, accumulating evidence from in vitro experiments as well as animal studies has revealed that β2GPI is the main target for aPL. It was also shown that triple aPL positivity, defined by detection LA, high titres of aCL and anti-β2GPI antibodies, correlates better with both thrombosis and pregnancy morbidity than any other aPL profile (4).

Several autoantibodies outside those included in APS classification criteria could be also relevant to APS pathogenesis (5) and therefore, antibodies against other antigen targets have been investigated. Current evidence shows that some of these antibodies, particularly antibodies against domain I of β2GPI (anti-DI-β2GPI) and phosphatidylysine dependent anti-prothrombin antibodies (aPS/PT) might be relevant in the better recognition of APS patients. These antibodies are commonly referred as non-criteria aPL (6) because they have not been yet accepted as laboratory criterion for the diagnosis of APS. The DI of β2GPI has been identified as the most relevant antigenic target involved in β2GPI/anti-β2GPI antibody binding. Anti-DI-β2GPI antibodies were found to be strongly related to thrombosis and pregnancy complication and are more frequently detected in patients with APS than in asymptomatic aPL carriers (7). High titres of anti-DI-β2GPI are also frequently present in triple aPL positive patients. Nevertheless, it is far too soon to recommend replacement of anti-DI-β2GPI testing with an anti-DI-β2GPI antibody assay because it was shown that about 30% of patients with anti-β2GPI antibodies are negative for anti-DI-β2GPI antibodies (8). The clinical significance of autoantibodies reacting with epitopes other than DI was also investigated in multicenter study (9). The results showed a diverse clinical association with reactivity to different epitopes on β2GPI, suggesting all domains were relevant. Therefore, more detailed profiling of domain specificity and avidity of anti-β2GPI antibodies may be useful as risk stratification for clinical events. APL/PT antibodies also represent strong risk factor for thrombosis. Results of multicenter study demonstrated that IgG aPS/PT detection might contribute to a better and more reliable identification of APS patients (10).

Disclosure of Interests: None declared

SP0177
IMPACT OF CHECKPOINT INHIBITORS ON B CELLS
David Piseký. Duke University Medical Center, Medicine/Immunology, Durham, North Carolina, United States of America

Immune checkpoint inhibitors (ICI) are a new class of biological agents that have revolutionized the treatment of cancer. Unlike conventional cytotoxic agents that