distinguishing normal capillaroscopic findings from (pathognomonic) abnormal (pathological) findings (scleroderma pattern), lies in the fact that this distinction allows the differentiation between a primary RP (not connected to any connective tissue disease (CTD)) from a secondary RP due to systemic sclerosis (SSc) and diseases of the scleroderma spectrum.

What is normal in primary RP?

A normal capillaroscopic pattern, by qualitative assessment, is characterized by a homogeneous distribution of hairpin shaped capillaries as a “comb-like structure”, with a density of >7 capillaries per mm, with a normal dimension and absence of large hemorrhages. Yet, there exists a wide intra- and inter-individual variety in a normal population which will be discussed in this session.

What is pathognomonic abnormal in patients with RP due to SSc?

Patients with the RP who have an underlying clinically recognizable (= with skin involvement) SSc show a very characteristic combination of capillary abnormalities in the nailfold, which can easily be assessed through qualitative assessment (= pattern recognition). Mariq et al. described last century, with the widerfield technique (magnification X12–14) the scleroderma pattern. This pathognomonic combination contains the following: a striking widening of all three segments of the capillary loop (arterial, venous and intermediate), loss of capillaries and disorganization of the nailfold capillary bed. Many branched “bushy” capillaries may also be observed.

In 2000, Cutolo et al. qualitatively assessed the nailfolds of an SSc cohort with patients fulfilling the American College of Rheumatology (ACR) criteria for SSc with the nailfold videocapillaroscopic (NVC) technique (magnification X200). According to the different proportions of the hallmark parameters of the scleroderma pattern (giants, capillary loss, hemorrhages and abnormal shapes: neo-angiogenesis, Cutolo et al. defined three patterns early”, “active” and “late.” The central role of capillaroscopy in distinction between a primary and secondary RP due to SSc is reflected by the fact that capillaroscopy is one of the new ACR-EULAR criteria for classifying a patient as having SSc.

In this lecture the standard “FAST TRACK” recognition system of the EULAR Study Group on Microcirculation in Rheumatic Diseases to discern scleroderma patterns from non-scleroderma patterns will be taught to the attendees.

Suggested further reading:

Disclosure of Interests: None declared

SP0132 METHODS AND TOOLS FOR QUANTIZATION OF CAPILLAROSCOPIC MORPHOLOGICAL CHANGES

Francesca Ingegnoli, Academic Rheumatology Unit Universita degli Studi di Torino, Academic Rheumatology Centre, Turin, Italy

Nailfold capillaroscopy is the one most used technique in both clinical and research settings by adult physicians and paediatric rheumatologists to assess patients with Raynaud’s phenomenon as shown by an international survey on non-invasive techniques to assess the microcirculation performed under the aegis of members of the EULAR Study Group on Microcirculation in Rheumatic diseases [1].

Nailfold capillaroscopy is a simple non-invasive imaging technique mainly used to observe capillaries on the skin surface. After application of a drop of immersion oil, capillaries can be observed with a magnification lens because they run parallel to the epidermis at the nailbed area [2]. A number of different instruments can be used to perform the exam. They have different characteristics in terms of their cost, quality of images, magnifications, training period, portability, software for image analysis and storage.

Some of these instruments can be used both in clinical and research settings such as the stereomicroscope and the videocapillaroscope. The stereomicroscope allows the widefield visualization of the nailfold with low magnifications, the training is relatively short, but the examination is difficult to perform in patients with digital flexion contractures.

There appears to be consensus regarding the use of videocapillaroscopy that allows a detailed visualization of capillary morphology using higher magnifications (100-300x). Contact probe with polarized light microscope permits easier observation of the skin surface, and the training period is briefer. Specific software are available for images analysis, storage, and complete medical reports (text + images) can be produced. By contrast, in a clinical setting, nailfold capillaries can generally be visualized using more simple, but also efficient tools such as a dermatoscope, USB microscope, ophthalmoscope or smartphone device. The quality of images can be compromised, although the lower magnification means that some details are unlikely to be seen, and they often lack the possibility of image storage and measurement. In particular, the dermatoscope with magnification of the order of x10 is a small, inexpensive and easily portable piece of equipment that has been suggested to be comparable to videocapillaroscopy in routine clinical practice. As the study of capillary morphology provides clinically relevant information in the management of patients with scleroderma-spectrum diseases, the development of specific software to standardize and automatize the analysis is ongoing [3-4].

REFERENCES: