Background: B cells play a crucial role in Systemic Lupus Erythematosus (SLE). Recently, “Immunometabolism” attract much attention. Glucose and glutamine are important nutrition for energy production such as ATP in various cells. It has been reported that aerobic glycolysis, glutaminolysis and mitochondrial functions enhanced in cancer cells. However, the involvement of metabolic reprogramming in plasmablast differentiation and its relevance to the pathogenesis of SLE remained elusive.

Objectives: We first investigated the abnormality of mitochondria in B cells from patients with SLE by flow cytometry. Next, B cells were isolated from healthy donors (HDs) and mitochondrial reprogramming were assessed in vitro.

Methods: First, peripheral blood mononuclear cells (PBMCs) were obtained from age-matched 31 HDs and 29 patients with SLE. The mitochondrial membrane potential was measured with DiOc6 by flow cytometry. In addition, CD19+ cells were isolated from HDs and stimulated with CpG (TLR9 ligand) and IFN-α. Change of aerobic glycolysis, glutaminolysis and mitochondrial functions were assessed in the absence of glucose or glutamine and in the addition of metformin, which is known as AMPK activator, in vitro.

Results: We first examined the abnormality of mitochondria in B cells from patients with SLE using DiOc6 as a marker of depolarization-activated mitochondrial membrane. Baseline characteristics of SLE were males: females=1:2.8, age 40.2 years, disease duration 132.2 months, with IgG-CD27- memory B cells were higher than those of HDs, while the percentage of IgM memory B cells were decreased in the absence of both glucose or glutamine. ROS production and DiOc6 expression were decreased in the absence of glucose, leading to inhibition of plasmablasts differentiation and immunoglobulin production. On the other hand, this tendency was not shown in the absence of glucose. Next, we evaluated oxygen consumption rate (OCR). OCR was also suppressed in the absence of glutamine. Metformin, abrogated glutamine uptake, resulting in suppression of OCR production of DiOc6 expression, plasmablasts differentiation and immunoglobulin production.

Conclusion: These results suggest that mitochondrial activation via glutaminolysis may play an important role in the differentiation from IgG/CD27+ double negative B cells to plasmablasts and production of immunoglobulins in patients with SLE.

Disclosure of Interests: Maiko Hajime: None declared, Shigeru Iwata: None declared, Mingzeng Zhang: None declared, Hiroko Miyata: None declared, SEUNGYUN LEE: None declared, Shingo Nakayamada Grant/research support from: Mitsubishi-Tanabe, Takeda, Novartis and MSD, Speakers bureau: Bristol-Myers, Sanofi, Abbvie, Eisai, Eli Lilly, Chugai, Asahi-kasei and Pfizer, Kazuo Yamamoto: None declared, Yosuke Okada: None declared, Yoshiya Tanaka: Grant/research support from: Abbvie, Astellas, Bristol-Myers Squibb, Chugai, Daiichi-Sankyo, Eisai, Mitsubishi-Tanabe, MSD, Ono, Taisho-Toyama, Takeda, Speakers bureau: Abbvie, Asahi-kasei, Astellas, Bristol-Myers Squibb, Chugai, Daiichi-Sankyo, Eli Lilly, Eisai, Glaxo-Smithkline, Janssen, Mitsubishi-Tanabe, Novartis, Pfizer Japan Inc, Sanofi, Takeda, UCB, YL Biologics


THU0219 THE INVOLVEMENT OF MITOCHONDRIAL ACTIVATION VIA GLUTAMINOLYSIS IN HUMAN B CELL DIFFERENTIATION AND ITS RELEVANCE TO THE PATHOGENESIS OF SLE

Maiko Hajime1, Shigeru Iwata2, Mingzeng Zhang3, Hiroko Miyata4, Seunghyun Lee1, Shingo Nakayamada1, Kazuo Yamamoto3, Yosuke Okada4, Yoshiya Tanaka1. 1University of Occupational and Environmental Health. Kitakyushu, Japan; 2Nagasaki University School of Medicine, Biomedical Research Support Center, Nagasaki, Japan

THU0220 PEPTIDYLARGININE DEIMINASE 4 DEFICIENCY AMELIORATED A MURINE MODEL OF LUPUS BY REDUCING NEUTROPHIL MIGRATION TO THE KIDNEY

Norio Hanata1, Hirofumi Shoda1, Hiroaki Hatano2, Yasuo Nagafuchi3, Toshikiko Komai1, Tomohisa Okamura4,2, Akari Suzuki5, Kazuhiko Yamamoto3, Keishi Fujio1. 1Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; 2Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; 3Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan

Background: Peptidylarginine deiminase 4 (PADI4) is reported to play several biological roles in neutrophils, including neutrophil extracellular trap formation, apoptosis, and epigenetic regulation. Neutrophils could play pivotal roles in the pathogenesis of SLE.

Objectives: We set to determine the pathological role of neutrophils and PADI4 in SLE using Padi4 knockout (KO) mice.

Methods: A murine model of imiquimod (IMQ)-induced lupus was analyzed. A TLR7 agonist, IMQ, was administered topically to the ear skin of B6 wild-type (WT) and Padi4 KO mice. Proteinuria, spleen weight, serum anti-dsDNA levels, frequencies of spleen and renal immune cells, and the histopathological findings of ear skin and kidney, were assessed. Neutrophil migration and adhesion were evaluated by adoptive transfer experiments in vivo and in vitro assays in the kidney.

Results: Compared with IMQ-treated WT (WT-IMQ) mice, Padi4 KO-IMQ mice showed decreased spleen weight. Moreover, proteinuria, and derma- titis were not exacerbated in the Padi4 KO-IMQ mice. There was a positive correlation between the frequency of kidney neutrophils and the degree of proteinuria, while significant decreases in kidney neutrophils was not observed in the Padi4 KO mice. Notably, the electrophoretic pattern of anti-dsDNA levels, or the degree of immune complex deposition in the kidney, showed no significant difference between the WT-IMQ and Padi4 KO-IMQ mice. In the adoptive transfer experiment, there was a significant decrease in the transferred Padi4 KO neutrophil infiltrations in the kidney compared with those of WT neutrophils. The frequency of adhesive neutrophils toward ICAM-1 was significantly decreased in the Padi4 KO neutrophils primed by the TLR7 agonist.

Conclusion: Nephritis was ameliorated in Padi4 KO-IMQ mice. Our study shed light on the importance of neutrophils in the pathogenesis of SLE, and the suppression of neutrophil function by inhibition of PADI4 will be a unique therapeutic strategy for SLE.

Disclosure of Interests: Norio Hanata: None declared, Hirofumi Shoda: Speakers bureau: Astellas, Abbie, BMS, GSK, Daiichi-Sankyo, Pfizer, Chugai, UCB, Eli Lilly, Hiroaki Hatano: None declared, Yasuo Nagafuchi: Grant/research support from: BMS, Chugai., Speakers bureau: BMS, Pfizer, Kissei., Hiroaki Hatano: Grant/research support from: GlaxoSmithKline., Tomohisa Okamura: Grant/research support from: Chugai, Kissei, Akari Suzuki: Grant/research support from: Takeda, Chugai, Pfizer., Kazuhiko Yamamoto: Grant/research support from: Astellas, BMS, Daiichi-Sankyo, Mitsubishi Tanabe, Pfizer, Ayumi, Takeda, Chugai, Eisai, Taisho Toyama, UCB, Janssen, Eli Lilly, and NIPPON KAYAKU., Speakers bureau: Astellas, BMS, Daiichi-Sankyo, Mitsubishi Tanabe, Pfizer, Ayumi, Takeda, Chugai, Eisai, Taisho Toyama, UCB, Janssen, Eli Lilly, and NIPPON KAYAKU., Keishi Fujio: Grant/research support from: Astel- las, BMS, Daiichi-Sankyo, Mitsubishi Tanabe, Pfizer, Ayumi, Takeda.
Background: Previous studies have linked the participation of multiple chemokines and cytokines in the pathophysiology of primary Sjögren’s syndrome (pSS), however data regarding their presence in tears is scarce.

Objectives: To evaluate a panel of chemokines/cytokines in the tears of patients with pSS and correlate them with ocular symptoms as well as objective ocular tests.

Methods: We included 21 patients with pSS (EULAR/ACR criteria). A single expert ophthalmologist in dry eye evaluated the patients and assessed the tear film break-up time, Schirmer-I test, tear meniscus height, the Van Bijsterveld staining score and the SICCA Ocular Staining Score (OSSS). We classified lacrimal dysfunction severity in two categories (1= mild, mild/moderate or moderate, and 2= moderate/severe and severe). We scored the ESSPR and, ocular dryness VAS as well as the Ocular Surface Disease Index (OSDI), a 12-item scale for the assessment of symptoms related to dry eye disease and their effect on vision. Tear samples were collected using sterile tear flow strips, that were immediately frozen at -86 °C until assayed. Once defrosted, the tears were extracted from the strips using a buffer containing 0.5 M NaCl and 0.5% Tween-20. We tested IFN-γ, IL-10, IL-12, IL-17A, IL-17F, IL-2, IL-21, IL-23, IL-5, IL-6, IL-8, TNF-α, BAFF, CXCL10 and CCL2 by Luminometry. We also included 21 healthy controls without dry eye, to test chemokines/cytokines that after our initial screening were meaningful.

Results: Most patients were females (90.4%), mean age 59.3±13 years and median disease duration 7.9 years (0.5-27). All of them had ocular and oral symptoms. The median tear film break-up time was 6 seconds (2-9), median Schirmer-I test 6 mm (1-25), median lacrimal meniscus height, 1.5 mm (0.5-2), median Van Bijsterveld staining score 10 points (2-18), median OSS 7 points (2-11), median ESPPRI score 6.7 points (2-9), median disease duration 7.9 years (0.5-27). All of them had ocular symptoms related to dry eye disease and their effect on vision. Tear samples were collected using sterile tear flow strips, that were immediately frozen at -86 °C until assayed. Once defrosted, the tears were extracted from the strips using a buffer containing 0.5 M NaCl and 0.5% Tween-20. We tested IFN-γ, IL-10, IL-12, IL-17A, IL-17F, IL-2, IL-21, IL-23, IL-5, IL-6, IL-8, TNF-α, BAFF, CXCL10 and CCL2 by Luminometry. We also included 21 healthy controls without dry eye, to test chemokines/cytokines that after our initial screening were meaningful.

Conclusion: We identified CXCL10 and CCL2 as the main chemokines in tears of patients with pSS, CXCL10 seems to participate in the normal eye homeostasis.

Disclosure of Interests: None declared


THU0222

PLASMACYTOID DCs FROM PATIENTS WITH SJÖGREEN’S SYNDROME ARE TRANSCRIPTIONALLY PRIMED FOR ENHANCED PRO-INFLAMMATORY CYTOKINE PRODUCTION

Maarten Hillen1, Aridaman Pandit1, Sofie Blokland1, Sarita Ay Hartgringen1, Cornelis Beker1, Eefje van der Heijden1, Nilia Servaas1, Marizza Rossato1, Aike A. Kruize1, Joel van Rooij1, Timothy R. Radstake2, 1University Medical Centre Utrecht, Laboratory of Translational Immunology/Rheumatology and Clinical Immunology, Utrecht, Netherlands; 2University Medical Centre Utrecht, Rheumatology and Clinical Immunology, Utrecht, Netherlands

Background: Type-I IFN activity is associated with pathogenesis and increased disease activity in primary Sjögren’s syndrome (pSS). In addition, deficiency for the type-I IFN receptor in mice prevents experimental-Sjögren’s syndrome. Plasmacytoid dendritic cells (pDC) are the premier type-I IFN producing immune cells and aberrances in their functional properties may underlie pSS immunopathology. Assessing the molecular basis of this may provide a better understanding of pSS pathogenesis and new opportunities for therapeutic intervention.

Objectives: To delineate the dysregulation of pSS pDCs using RNA-sequencing and compare their transcriptional profile to pDCs obtained from patients with non-Sjögren’s sicca (nSS) and healthy controls (HC).

Methods: All pSS patients met the classification criteria. nSS patients presented with dryness complaints without a known cause, did not have any genetic autoimmune disease including pSS as evaluated by an experienced rheumatologist, and did not fulfil the classification criteria. pSS (n=25), nSS (n=20), and HC (n=17) donors were included in two independent cohorts (n=31 each). Circulating BDCA-4 expressing pDCs were isolated and RNA-sequencing was performed, after which data-driven networks and modular analysis were used to identify signatures of consistently differentially-expressed genes, pSS and HC pDCs were cultured in the presence of endosomal TRL ligands, after which gene expression and secreted cytokine levels were measured.

Results: We identified signatures of consistently co-expressed and differentially expressed genes that indicated transcriptional activation in patient pDCs, which was remarkably reproducible in two independent cohorts. These included a type-I IFN-associated signature, a ribosomal protein signature, and a transcriptional machinery signature. Corroborating the transcriptomic profile, stimulated pSS pDCs produced higher levels of type-I interferon upon in vitro stimulation. nSS patients formed an intermediate group in which some patients were molecularly similar to pSS patients. Finally, we developed a discriminative classifier on the basis of the identified transcriptional profile that discriminated pSS patients from HC with 100% sensitivity and 80% specificity, and identified a group of pSS-like patients within the nSS group.

Conclusion: Circulating pSS pDCs exhibit a transcriptional signature similar to activated pDCs and are primed for enhanced production of pro-inflammatory cytokines, including type-I IFN. Our data provide in-depth characterization of the aberrant regulation of pSS pDCs and substantiate their perceived role in the immunopathology of pSS and other type-I interferon-associated autoimmune diseases.

Disclosure of Interests: None declared


THU0223

CHRONIC ADRENERGIC STIMULATION OF MINOR SALIVARY GLANDS OF PATIENTS WITH PRIMARLY SJÖGREEN’S DRIVES ER STRESS AND ACTIVATION OF THE UNFOLDED PROTEIN RESPONSE

Kaiilopi Moustaka1, Stereios Katsiogiannidis1, Roxane Tenta1, Sofia Havaki1, Pari Koutsoudaki1, Haralampos M. Moutsopoulos2, Fotini Skopoulou1, 1Harokopio University, Nutrition and Clinical Dietics, Κύκλος Ηλιου, Greece, 2National and Kapodistrian University of Athens, Histology and Embryology, Athens, Greece; 3The Academy of Athens, Athens, Greece

Background: Sjögren’s syndrome (SS) is a common autoimmune disease in which the main targets of immune injury are specific secretory epithelia, such as salivary and lacrimal glands. Stress appears to play a significant role in the initiation and progression of SS.

Objectives: The aim of the present study was to investigate whether chronic stress plays a role in triggering endoplasmic reticulum (ER) stress in salivary gland epithelial cells from SS patients.

Methods: Minor salivary gland biopsy specimens were obtained from six SS patients and six control patients with sicca symptoms not fulfilling AECG criteria [1]. The expression and cellular localization of BiP/GRP78 and CHOP were determined by immunoblot analysis.

Results: In situ immunofluorescence staining revealed increased expression of BiP [1, 2] and of α1-adrenoceptors and the levels of cAMP were measured by immuno- fluorescent microscopy. The morphology of the ER was evaluated in situ by Transmission Electron Microscopy (TEM). Primary salivary gland epithelial cell lines (SGEC) derived from minor salivary gland biopsies, were established by the explant out-growth technique [2] and were treated with epi- nephrine and norepinephrine. The protein levels of the ER stress markers, GRP78/Bip and C/EBP homologous protein (CHOP) were determined by immunoblot analysis.

Disclosure of Interests: None declared


THU0211

DRY EYE IN SJÖGREEN’S SYNDROME: CHEMOKINE AND CYTOKINE TEAR SPECTRUM


We did not detect most of the evaluated chemokines/cytokines with the exception of IL-5, IL-6, IL-8, TNF-α, IL-10, IL-12, IL-17A, IL-17F, IL-2, IL-21, IL-23, IL-5, IL-6, IL-8, TNF-α, BAFF, CXCL10 and CCL2 by Luminometry. We also included 21 healthy controls without dry eye, to test chemokines/cytokines that after our initial screening were meaningful.

Conclusion: We identified CXCL10 and CCL2 as the main chemokines in tears of patients with pSS, CXCL10 seems to participate in the normal eye homeostasis.

Disclosure of Interests: None declared