INFLUENCE OF BLUE MUSSEL (MYTILUS EDULIS) INTAKE ON FATTY ACID COMPOSITION IN ERYTHROCYTES AND PLASMA PHOSPHOLIPIDS AND SERUM METABOLITES IN WOMEN WITH RHEUMATOID ARTHRITIS

Helen Lindqvist1, Inger Gjertsson1, Philip Calder2, Linnea Barebring1. 1University of Gothenburg, Medicine, Gothenburg, Sweden; 2University of Southampton, Southampton, United Kingdom

Background: The positive effects of omega-3 on risk of cardiovascular disease, on inflammation and immune function are well established [1]. Unfortunately fish as a source of omega-3 is not economically or environmentally sustainable. In contrast, blue mussel farming is beneficial for the environment since excessive nitrogen is removed at harvest and eutrophication of the sea is reduced [2]. Blue mussels contain not only omega-3, but are rich in nutrients such as zinc, selenium, riboflavin and carotenoids. We have previously shown, in the randomized cross-over trial Mussels, Inflammation and RA (MIRA), that disease activity (DAS28-CRP), fatigue, pain and general health in RA is improved by a dietary intervention with blue mussels compared to control [3]. It is not clear what the mechanisms of the intervention were, and if the intake of omega-3 from the blue mussels plays a role.

Objectives: The aim of this study was to investigate if the intake of blue mussels in patients with RA lead to changes in fatty acid composition in plasma phospholipids and erythrocytes and/or in metabolites (detected by NMR-metabolomics), compared to a control diet, in an attempt to understand the health beneficial effects found in the MIRA study.

Methods: Twenty-three women completed the randomized 2 x 11-week cross-over dietary intervention, exchanging one cooked meal a day, five days a week, with a meal including 75 g blue mussels or 75 g meat. Fatty acid composition in erythrocytes and plasma and 1H-NMR metabolomics data were analysed and multivariate data analysis; Orthogonal Projections to Latent Structures with Discriminant Analysis (OPLS-DA) and OPLS with effect projections (OPLS-EP) were performed to compare the two diets.

Results: Intake of the blue mussels led to a different fatty acid profile in erythrocytes, compared to control, and all samples could be correctly classified with OPLS-DA (figure 1). The changes included significant increases in omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The patterns for plasma phospholipids and 1H-NMR serum metabolites were not as specific for the diets and metabolites were strongly influenced by body mass index (BMI) (figure 2).

Conclusions: To conclude, the change in fatty acid pattern in erythrocytes could be related to reduction in disease activity in the MIRA-study, although it cannot be excluded that other factors than omega-3 fatty acids potentiate the effect. Multivariate modelling of fatty acids in erythrocytes increased the precision for compliance, compared to evaluating EPA and DHA content alone.

REFERENCES: