A MATCHING-ADJUSTED INDIRECT COMPARISON (MAIC) OF UPADACITINIB VERSUS TOFACITINIB IN CDSSMARD-IR PATIENTS WITH MODERATE TO SEVERE RHEUMATOID ARTHRITIS (RA)

Christopher Edwards1, Ruta Sawan2, Elia Du3, Jordan Cammarota4, Patrick Tang5, Vishvas Garg6, Alan Friedman7, Keith Betts3, University of Southampton, Southampton, United Kingdom;2AbbVie Inc., North Chicago, United States of America;3Analysis Group, Inc, Los Angeles, United States of America

Background: Upadacitinib (UPA), a JAK1 selective inhibitor, is being investigated as monotherapy and combination therapy with DMARDs for the treatment of moderate-to-severe RA. To date, no head-to-head trials have compared the effectiveness of UPA with tofacitinib (TOFA).

Objectives: To compare the efficacy of UPA 15 mg monotherapy and combination therapy with TOFA 5 mg combination therapy using MAICs.

Methods: Two MAICs were conducted. MAIC is an indirect comparison technique that utilizes individual patient data (IPD) for one treatment and aggregate data for the other treatment to provide comparative evidence after balancing differences in patient characteristics. The first MAIC used IPD from the SELECT-MONOTHERAPY trial of UPA monotherapy vs. methotrexate (MTX) and published data from the Oral Standard trial of TOFA+MTX vs. MTX. The second used IPD from the SELECT-COM- PARE trial of UPA+MTX vs. adalimumab (ADA)+MTX and published data from the ORAL Strategy trial of TOFA+MTX vs. ADA+MTX. UPA monotherapy was not compared to TOFA monotherapy based on feasibility analysis and trial selection criteria. Patients in the UPA trials were re-weighted based on age, gender, race, swollen joint count 66/28, tender joint count 66/28, C-reactive protein (CRP), and patient’s global assessment, to match the baseline characteristics in each comparator trial. After matching, ACR20/50/70 and clinical remission (SDAI(CRP) ≤3.3, CDAI ≤2.8, DAS28-ESR ≤2.6) were compared for UPA monotherapy vs. TOFA+MTX relative to MTX at month 3 and UPA+MTX vs. TOFA+MTX relative to ADA+MTX at month 3 and 6 using a Wald test.

REFERENCES:

Acknowledgement: The design, study conduct, and financial support for the study were provided by AbbVie. AbbVie participated in the interpretation of data, review, and approval of this publication.

Disclosure of Interests: Christopher Edwards Grant/research support from: Abbvie, BMS, Biogen, Celgene, Fresenius, Janssen, Lilly, Mundipharma, Pfizer, MSD, Novartis, Roche, Samsung, Sanofi, UCB, Consultant for: Abbvie, BMS, Biogen, Celgene, Fresenius, Janssen, Lilly, Mundipharma, Pfizer, MSD, Novartis, Roche, Samsung, Sanofi, UCB, Speakers bureau: Abbvie, BMS, Biogen, Celgene, Fresenius, Janssen, Lilly, Mundipharma, Pfizer, MSD, Novartis, Roche, Samsung, Sanofi, UCB, Ruta Sawant Shareholder of: AbbVie, Employee of: AbbVie, Elia Du Employee of: Analysis Group, Inc., which has received consultancy fees from AbbVie to conduct this study, Jordan Cammarota Employee of: Analysis Group, Inc., which has received consultancy fees from AbbVie to conduct this study, Vishvas Garg Shareholder of: AbbVie, Employee of: AbbVie; Alan Friedman Employee of: AbbVie, Employee of: AbbVie, Keith Betts Employee of: Analysis Group, Inc., which has received consultancy fees from AbbVie to conduct this study.


THU0169

JANUS KINASE INHIBITORS DEMONSTRATE EFFECTIVENESS IN A REAL-WORLD MULTI-BIOLOGIC DMARD REFRACTORY RHEUMATOID ARTHRITIS POPULATION

John Fittin1,2, Andrew Melville1,2, Shouvik Dass1, Paul Emery1,2, Jacqueline Nani1,2, Maya Buch1,2, Leeds Institute of Rheumatology and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, United Kingdom;1University of Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom;2Leeds Teaching Hospitals NHS Trust, Rheumatology, Leeds, United Kingdom

Background: The Janus Kinase inhibitors (JAKi) Tofacitinib and Baricitinib are licensed for use in Rheumatoid arthritis (RA). Trials in refractory RA (inefficacy and/or toxicity) to date (1, 2) suggest targeting intracellular signaling molecules and interrupting downstream effects of multiple cytokines may confer benefit in the management of patients who have failed multiple targeted therapies.

Objectives: To evaluate safety and efficacy of JAKi in a real-world population, including response in multi-bDMARD refractory RA.

Methods: We evaluated RA patients who had failed at least 2 csDMARD +/- one or more bDMARD, who were commenced on a JAKi. Patients who commenced Tofacitinib on a compassionate use programme in 2014 may confer benefit in the management of patients who have failed multiple targeted therapies.

Methods: We evaluated RA patients who had failed at least 2 csDMARD +/- one or more bDMARD, who were commenced on a JAKi. Patients who commenced Tofacitinib on a compassionate use programme in 2014 may confer benefit in the management of patients who have failed multiple targeted therapies.

Conclusions: The results from MAICs indicate that treatment with UPA 15 mg when used as monotherapy or in combination with MTX appears to produce improved outcomes at 3/6 months as compared to TOFA 5 mg +MTX (mono: ACR70 and combination: ACR50, SDAI, CDAI and DAS28-ESR remission).

* Clinical remission outcomes not reported for ORAL Standard at Month 3.

Abstract THU0168 – Figure 1

Figure 1: MAIC results for UPA 15 mg vs. TOFA 5 mg vs. MTX at Month 3 and UPA 15 mg vs. TOFA 5 mg + MTX at Month 6

Figure 1a. ACR20/50/70 relative to MTX at Month 3 and UPA 15 mg vs. TOFA 5 mg + MTX at Month 3

Figure 1b. ACR20/50/70 and Clinical Remission (SDAI(CRP) ≤3.3, CDAI ≤2.8, DAS28-ESR ≤2.6) relative to ADA+MTX at Month 3 and UPA+MTX vs. TOFA+MTX relative to MTX at Month 6

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Combined JAKi</th>
<th>Tofacitinib</th>
<th>Baricitinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>grp (n=77)</td>
<td>(n=38)</td>
<td>(n=39)</td>
<td></td>
</tr>
<tr>
<td>Disease duration, years; mean (SD)</td>
<td>13.6 (5.34)</td>
<td>15.6 (4.52)</td>
<td>12.7 (6.16)</td>
</tr>
<tr>
<td>Previous number of targeted therapies (median, range)</td>
<td>4 (0-9)</td>
<td>5 (2-7)</td>
<td>3 (0-9)</td>
</tr>
<tr>
<td>Targeted therapy naïve</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Baseline DAS28; mean (SD)</td>
<td>5.76 (SD 1.07)</td>
<td>6.23 (SD 1.08)</td>
<td>5.5 (SD 0.95)</td>
</tr>
<tr>
<td>Baseline CRP; mean (SD)</td>
<td>2.3 (SD 1.57)</td>
<td>2.7 (SD 1.62)</td>
<td>2.6 (SD 1.70)</td>
</tr>
<tr>
<td>3m change in DAS28</td>
<td>-1.54 (SD 1.6)</td>
<td>-2.07 (SD 1.72)</td>
<td>-1.54 (SD 1.6)</td>
</tr>
<tr>
<td>6m change in DAS28</td>
<td>-2.07 (SD 1.6)</td>
<td>-2.15 (SD 1.72)</td>
<td>-1.54 (SD 1.6)</td>
</tr>
</tbody>
</table>

Of the 38 patients who received Tofacitinib, 24 stopped treatment, 10 due to primary non-response, 2 secondary non-response and 12 due to