of the surface proteins CD34, CD45, Thy-1 and Podoplanin. The potential effect of cell detachment solutions on the expression of the surface proteins was examined by applying either trypsin or lidocaine. To evaluate on the inflammation status of the FLS, MCP-1 levels in supernatants from FLS in mono-cultures stimulated with either antibodies targeting galectin-9 (Gal-9), an anti-Gal-9 antibody-matched isotype control, LPS or steroid were analyzed by ELISA and compared to culture medium alone. Cell viability were examined using an MTT assay. Data are expressed as mean (95% CI) and analysed by a paired t-test. P-values <0.05 were considered statistically significant.

Results: FLS derived from SFMC were characterized as CD34+CD45+ and the major co-expressed Thy-1 and Podoplanin (80.5%, (66.3-94.7%)) confirming the pathogenic phenotype of these cells. This phenotype was not altered by using different methods to detach the cells from the cell-culture plates. FLS receiving anti-Gal-9 antibody treatment showed a significant decrease in MCP-1 secretion 0.84, [0.70-0.98] compared with unstimulated cells (p=0.036). Treatment with an anti-Gal control did not result in a significant decrease in MCP-1 secretion. This tendency was specific to FLS derived from RA patients as FLS derived from OA patients showed no significant decrease in MCP-1 secretion upon anti-Gal-9 antibody treatment. FLS derived from both RA or OA patients showed a significant increased fold change in secretion of MCP-1 upon LPS stimulation and significantly decreased levels of MCP-1 upon steroid treatment, consistent with the pathogenic phenotype of these cells. None of the different stimulations resulted in morphological changes of the FLS examined by light microscopy. Further, no significant changes in cell viability were detected after anti-Gal-9 antibody treatment.

Conclusion: FLS cultures derived from RA patients at passage 2-5 consist mainly of disease-associated fibroblasts and secrete significantly lower amounts of MCP-1 when treated with an anti-Gal-9 antibody without affecting cell viability. Thus suggesting that Gal-9 neutralization may represent a novel treatment option targeting the stromal environment and inflammation in RA.

REFERENCES:

Disclosure of Interests: Ditte Koster: None declared, Malene Hvid: None declared. Aida Solhøj Hansen: None declared, Tue Wenzel Kragstrup Ditte Køster: None declared, Malene Hvid: None declared.

THU0020 COMPARATIVE STUDY OF THE PHOSPHODIESTERASE TYPE 5 INHIBITOR SILDENAFIL AND THE PROSTACYCLIN ANALOGUE ILOPROST ON IP10 MODULATION IN SYSTEMIC SCLEROSIS
Clara Crescioli1, Valeria Riccieri2, Katia Stefanon3, Clariisa Corinaldesi4, Massimiliano Vasile2, Francesco Marampi2, Guido Valesi2, Andrea Lenzì2, Luigi Di Luigi1, cristina antinozzi1.1University of Rome Foro Itacco, Rome, Italy; 2Sapienza University of Rome, Rome, Italy

Background: Systemic sclerosis (SSc) is an autoimmune disease ending in multorgan fibrosis. Vascular damage, responsible for the vascular alteration and disruption, has been suggested to play a key role in disease maintenance and progression [1]. Recent data demonstrated that high serum levels of the interferon (IFN)-γ-induced protein 10 (IP-10) in SSc patients correlated with peripheral vascular injury and increased in association with nailfold capillaroscopic worsening and digital ulcers presence [2, 3]. Between the vasoactive drugs used for SSc treatment, the prostacyclin analogue iloprost (I) and PDE-5 inhibitor sildenafil (S) seem to have high vasodilatory and immunomodulatory actions [4-6].

Objectives: To investigate and compare the ability of S and I to modulate: IP-10 circulating levels in SSc patients under different treatments; IP-10 release by human endothelial (Hfaec) cells subjected to Th1-related inflammatory stimuli. Methods: Sera of 28 patients satisfying ACR/EULAR 2013 classification criteria for SSc were analyzed by ELISA. IFN-γ+TNFα-activated induction of NFκB, STAT1, JNK, ERK1/2 and AKT in Hfaec after S or I was tested by Western blot.

Results: The treatment with S significantly reduced IP-10 serum levels vs. treatment with (DMARDS) and corticosteroids (CCs) (184.1±65.10 vs 880.9±339.0 pg/ml and vs. 426.5±10.17, respectively, P<0.01); while no significant difference has been found vs. I (184.±65.10 vs 282.7±46.6 pg/ml). In Hfaec, S and I differently counteracted the IFN-γ+TNFα-induced phosphorylation of JNKs (respectively 61.0%±20.1% and 95±13.1% of phosphorylation vs. I+T-induced taken as 100%), STAT1 (respectively 49.2±15.8% and 93±12.2% of phosphorylation vs. I+T-induced taken as 100%), NFκB (respectively 72.6±8.3% and 92±3.3% of phosphorylation vs. I+T-induced taken as 100%), ERK1/2 (respectively 31.6±7.9% and 49.2±15.8% of phosphorylation vs. I+T-induced taken as 100%), and AKT respectively 85.7±5.6% and 3.8±7.4% of phosphorylation vs. I+T-induced taken as 100%). Conclusion: In vivo results show that S and I have more effect in targeting serum IP-10 in SSc patients than other therapeutic treatments. In vitro data show different inhibitory drug-induced effects on pathways underlying IP-10 production, depending on intracellular targets. S could be a potential pharmacological tool as effective as I to control IP-10 in blood or at endothelial cell level in SSc.

REFERENCES: