the management of chronic illnesses, such as diabetes treatment, including good users’ acceptance and an increase in their knowledge. Knowledge acquisition is generally seen as a necessary condition for behavioral change. Applications with virtual humans offer a dynamic, interactive and easily accessible approach to enhance users’ knowledge. We did not find published literature on the use of virtual humans to educate people with OA.

Objectives: To develop a web application to support education of caregivers and people with OA.

Methods: This is a proof of concept study, which builds on our previous experience with virtual assistant applications. For example, “Virtual Pharmacy” is intended to improve self-medication consultation skills between students/pharmacy professionals and community pharmacy clients, whilst “VASelfCare” aims to facilitate self-care of older people with type 2 diabetes (REF?).

The main principle underpinning the development of our application is the use of gamification embedded in a narrative with a double purpose of maintaining user engagement and enhancing the play experience. This option has in consideration that OA is more prevalent among the seniors and is supported by a study showing that embedding narratives in mobile games enhances the play experience of this age group.

In our approach, the narrative comprises dialogues aiming to ease and stimulate the search for new knowledge, and to educate for disease management and health promotion.

Results: So far, we have developed NOA, a virtual assistant that interacts with users through speech (voice and subtitles) plus facial and body animations. NOA is a 2D cartoon female model that plays the role of a character who suffers from OA and provides information about her own experiences with the disease. At the end of each dialogue, a quiz tests users’ knowledge. Awarding points and displaying badges for correct answers, or showing the right answers when the user fails, is expected to motivate users to play and learn more. This application will be placed in the “Portuguese League Against Rheumatic Diseases” website to convey easy access.

Conclusion: Development of a virtual assistant web application to promote education on OA, resorting to a narrative approach and gamification principles, is ongoing. Future work includes testing the application with experts and patients.

REFERENCES:

Disclosure of Interests: None declared


OP0288-PARE WHAT DO YOUNG PEOPLE THINK ABOUT CONTINUOUS DATA COLLECTION IN CLINICAL RESEARCH AND THE TYPES OF ELECTRONIC DEVICES?
Laura Lunt1,2,3, Stephanie Shoop-Worrall4,5, Sonia Khamon6,7, Imogen Bolger2, Antoniou L Fantana,3, Mary A Short1, Janet McDonagh1,2,3, NHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; 1BANNAR Your Rheum, The University of Manchester, Manchester, United Kingdom; 2The University of Manchester, Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, Manchester, United Kingdom; 3The University of Manchester, Centre for Health Informatics, Manchester, United Kingdom; 4ElI Lilly and Company, Indianapolis, United States of America

Background: The use of wearable devices are of increasing interest to enable continuous data collection during drug trials. This is particularly pertinent when involving young people who are “digital natives” and have grown up with such technologies.

Objectives: To ascertain opinions from young people regarding the design of wearable devices and the use of continuous data collection for a future clinical drug trial for juvenile idiopathic arthritis (JIA).

Methods: A three hour face-to-face patient involvement session was held in a young person friendly venue in central Manchester on the 8th December 2018. Young people with a rheumatic disease were invited to participate using event flyers provided in local rheumatology clinics. Members of a national youth advisory panel, Your Rheum, were also invited to attend. Data was collected in both large and small group discussions and included a ranking exercise involving the use of voting cards, emojis and pictures of electronic devices to aid conversations. In addition, an online survey was also developed and uploaded to http://your-rheum.org for young people to complete if they could not attend the event in person. Open questions (requesting free text answers) ranged from general thoughts and concerns about continuous data collection, device preferences and features, to examples of unattractive devices.

Results: Eight young people attended the event (M=5, F=3, 11-19 age range). All males were under 14 years of age. One young person completed the online survey (F=1). All participants regularly used some form of an electronic device and were generally willing to use a wearable device for continuous data collection, although consideration of school regulations (e.g. uniform policies) and potential bullying was necessary. Participants reported that they would choose a device based on its viability, look, comfort and functionality. For instance, the device would need to be discrete in terms of size, muted (no sounds or vibrations) and removable. The preference of device type differed by gender though a watch and patch were in the top three favourite devices for all. Key features included the...