AN OPEN-SOURCE WEB-BASED ANALYTICS PLATFORM FOR THE HUMAN IMMUNE ATLAS

Martin Wasser1, Joo Guan Yeo1, Pavanish Kumar1, Thaschawee Arkachaisri2, Su Li Poh1, Fauziah Aly1, Jing Yao Leong1, Kee Thai Yeo1, Salvatore Albani1, 1Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore; 2KK Women’s and Children’s Hospital, Rheumatology and Immunology, Singapore, Singapore

Background: Mass cytometry (CyTOF) measures the expression of many proteins (currently up to 40) in single cells. It applies CyTOF to characterise cellular diversity of the immune system in peripheral blood and other tissues. Using a growing collection of CyTOF data acquired from blood of clinically and demographically diverse human subjects, we have built our version of the immune atlas, called EPIC (Extended Poly-dimensional Immunome characterization).

Objectives: We will discuss two main objectives of this project. To integrate CyTOF data, metadata, cell annotations or other inferred data into the immune atlas, we developed a novel data analytics pipeline. To provide a user-friendly gateway that helps researchers explore the immune atlas and gain new insights about their own CyTOF data, we implemented a web-based data analytics application using the R Shiny programming environment.

Methods: The core components of the atlas are ‘immune maps’, which comprise CyTOF data of samples labeled with identical antibody panels and grouped according to a common biological theme. Besides protein expression patterns, immune maps contain clinical and demographic metadata, as well as phenotypic information inferred from clustering and cell type annotation. To intuitively analyse these complex multidimensional data, we developed a Shiny/R web application that has two main objectives. First, clients can explore the immune atlas at different levels of details using a wide range of interactive visualisation methods, such as bar charts comparing the abundance of all or subsets of immune cell types in different age groups, or tSNE/UMAP scatter plots providing global perspectives of expression domains. Second, users can upload their own CyTOF data and, through pattern matching, obtain instant estimates about the abundance of selected immune cell populations in their own samples.

Results: We tested our system using immune maps constructed from healthy paediatric samples. Manually gated ground truth data along with interactive visualisation techniques were used to measure the accuracy of our pipeline in detecting and annotating homogenous cell populations. In addition, we will demonstrate how immune maps can be applied to classify uploaded CyTOF data.

Conclusion: Our interactive immune atlas platform promises to improve our understanding of the changing immune landscape in response to disease, treatment and ageing.

REFERENCES

NA

Disclosure of Interests: Martin Wasser: None declared, Joo Guan Yeo: None declared, Pavanish Kumar: None declared, Thaschawee Arkachaisri: Speakers bureau: Abbvie Pte. Ltd, Su Li Poh: None declared, Fauziah Aly: None declared, Jing Yao Leong: None declared, Kee Thai Yeo: None declared, Salvatore Albani: None declared


LATEX ENHANCED TURBIDIMETRIC IMMUNOASSAY

Yanyao Wu, Xiang-Cong Zhao, Jing Luo, The Second Hospital of Shaxi Medical University, Taiyuan, China

Background: Some of the autoantibodies found in RA are primarily directed against these citrullinated protein epitopes and can be found even before the symptoms of arthritis appear [1]. So the detection of these antibodies can be used in clinical practice to help develop therapeutic strategies. The classic method for detecting anti-CCP antibodies in serum is ELISA. However, the traditional ELISA method still has some inevitable limitations, such as time-consuming, complicated process and low degree of automation, may not be able to provide clinicians with quick answers. Therefore, the purpose of our study was to determine whether the LETIA, which is faster than ELISA, can be used in routine experiments, and to explore the clinical application value of the LETIA in the detection of anti-CCP antibodies.

Objectives: The purpose of our study was to evaluate the consistency of Letia Enhanced Turbidimetric Immunoassay (LETTIA) and ELISA in the detection of anti-cyclical citrullinated peptide antibodies (anti-CCP antibodies) in 139 patients, for the diagnosis of early rheumatoid arthritis (RA), and to determine that LETIA can be used in daily practice.

Methods: A total of 139 serum or plasma samples were collected from patients with or suspected of having RA. The anti-CCP antibodies of these samples were detected by LETIA and ELISA simultaneously, all tests were carried out in accordance with the manufacturer’s standard procedures. Finally, we compared the technical performance and diagnostic accuracy, and assessed the clinical sensitivity and specificity of these two methods.

Results: The Kappa coefficient and consistency rate measured between LETIA and ELISA were greater than 0.91. The sensitivity and specificity values of LETIA were 83.33% and 95.6%, respectively. The positive predictive value and negative predictive value were 90.91% and 91.58%, respectively. The confidence interval of 95% positive coincidence rate was 78.97-82.75%, while the confidence interval of 95% negative coincidence rate was 82.75-88.97%


AGE-RELATED MUSCULOSKELETAL STIFFNESS AMONGST HEALTHY SUBJECTS

Hugh Watson1, Amalie Lynggaard2, Lars-Erik Barrets2, 1Aarhus University, Department of Clinical Medicine, Aarhus, Denmark; 2Randers Regional Hospital, Department of Internal Medicine, Rheumatology, Randers, Denmark

Background: A patient questionnaire for evaluating musculoskeletal stiffness (MSQ) has been developed for rheumatoid arthritis (RA) (Halls 2015) and also tested in chikungunya disease. Joint stiffness is associated with older age in adults.

Objectives: The aim of this study was to evaluate the variation in MSQ scores with age in a cohort of healthy adults.

Methods: Subjects ≥18 years old were enrolled at two sites. Subjects were engaged in, or had completed, tertiary education. Subjects with a diagnosis of joint disease, Parkinson’s disease or multiple sclerosis were excluded. Each subject completed a 21-item questionnaire designed to evaluate the severity of musculoskeletal stiffness, its physical impact and psychosocial impact, and to provide an overall stiffness score. Results are expressed as a percentage of the maximum possible score.

Results: Two hundred and fifty-eight subjects were included, 120 males and 138 females. Subjects were >95% Caucasian. The mean age of subjects was 40±16 years. No differences were seen in the stiffness scores between males and females. The percentage of subjects reporting any stiffness was over 50% in every age group, and markedly higher in those aged ≥60 years (Table). The average overall MSQ scores and those of its three components were low and showed little variation between the three lower age cohorts, but scores increased in the upper age cohort (Table).

Conclusions: The prevalence of musculoskeletal stiffness in healthy subjects as measured with this questionnaire is not negligible. Overall stiffness scores in this study were low in the subjects aged 18-59 years when compared to those aged 60 and chikungunya subjects. However, the high frequency of stiffness and the higher average scores in the upper age cohort suggest that the background joint stiffness amongst older subjects should be considered when interpreting stiffness scores in patients.

REFERENCES


Disclosure of Interests: Hugh Watson Shareholder of: Sanofi, Employee of: Sanofi, Amalie Lynggd: None declared, Lars-Erik Barrets: None declared


COMPARATIVE STUDY OF ANTI-CCP ANTIBODIES BY LATEX ENHANCED TURBIDIMETRIC IMMUNOASSAY AND ELISA

AB1336


Disclosure of Interests: Hugh Watson Shareholder of: Sanofi, Employee of: Sanofi, Amalie Lynggd: None declared, Lars-Erik Barrets: None declared


Results: The Kappa coefficient and consistency rate measured between LETIA and ELISA were greater than 0.91. The sensitivity and specificity values of LETIA were 83.33% and 95.6%, respectively. The positive predictive value and negative predictive value were 90.91% and 91.58%, respectively. The confidence interval of 95% positive coincidence rate was 78.97-82.75%, while the confidence interval of 95% negative coincidence rate was 82.75-88.97%.

*Disclosure of Interests: Martin Wasser: None declared, Joo Guan Yeo: None declared, Pavanish Kumar: None declared, Thaschawee Arkachaisri: Speakers bureau: Abbvie Pte. Ltd, Su Li Poh: None declared, Fauziah Aly: None declared, Jing Yao Leong: None declared, Kee Thai Yeo: None declared, Salvatore Albani: None declared


AB1336

Comparison of anti-CCP antibodies by Latex-enhanced turbidimetric immunoassay and ELISA.