Table 1. Validation of LDF according to the OMERACT filter

<table>
<thead>
<tr>
<th>TRUE</th>
<th>CONTENT</th>
<th>CONSTRUCT</th>
<th>HC vs SSc</th>
<th>PRP vs SRP</th>
<th>LsSsc vs DSSc</th>
<th>In clinical trials</th>
<th>Sensitivity in situations of change</th>
<th>Sensitivity in situations of no change</th>
<th>FEASIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td>ND</td>
<td>NA</td>
<td>PV</td>
<td>PV</td>
<td>PV</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cold challenge</td>
<td>ND</td>
<td>V</td>
<td>ND</td>
<td>ND</td>
<td>PV</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>PORH of Heat challenge</td>
<td>ND</td>
<td>V</td>
<td>PV</td>
<td>PV</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>PORH kinetics</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>PV</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>PORH amplitude</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>PV</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Conclusion: This systematic review emphasizes the very preliminary validation status of LDF in the assessment of the FBP in SSc. No single application method has emerged as fully validated according to the OMERACT filter.

REFERENCES


Disclosure of Interests: None declared

AB1330

SOLUBLE VASCULAR CELL ADHESION MOLECULE-1 AS AN INDEPENDENT MARKER FOR ENDOTHELIAL ACTIVATION IS ELEVATED IN ACTIVE RHEUMATIC DISEASES: A MULTIVARIATE ANALYSIS

Mara Oleszowsky1, Widian Laaraj2, Tanja Kottmann3, Matthias Seidel4

1Praxis für Rheumatologie, Köln, Germany; 2Universität Bonn, 53127 Bonn, Germany; 3CRO Dr. med. Kottmann GmbH and Co. KG, 59077 Hamm, Germany; 4Spitalzentrum Biel/Centre hospitalier Bienne, Chefarzt Rheumatologie/Médicin-chef rhumatologie, CH-2601 Biel/Bienne, Switzerland

Background: CRP and/or ESR are often unreliable indicators of disease activity. Serum markers of endothelial activation may be promising alternatives. We have recently shown that soluble vascular cell adhesion molecule-1 (sVCAM-1) is elevated in patients with positive antinuclear antibodies [1]. We also have described similar findings in another cohort of patients with a variety of rheumatic diseases [2] and now report a multivariate analysis of these data.

Objectives: CRP, ESR, age, disease and gender were correlated to sVCAM-1.

Methods: Cross-sectional study with 230 patients with rheumatoid arthritis (RA), ankylosing spondylitis (AS), psoriatic arthritis (PsA) and different vasculitides (VASC). Disease activities were determined using DAS28, BASDAI, BVAS, RF, ACPA, CRP or ESR. Treatment regimens were subgrouped for conventional DMARDs (cDMARDs) or different groups of biologic DMARDs (bDMARDs). sVCAM-1 (ng/ml) was determined in the serum by ELISA and data were compared to age- and gender-matched healthy controls (HC).

Results: Significant (p < 0.05) overexpression of sVCAM-1 as compared to HC were found in the following subgroups and groups (subgroup data not shown): RA (n=136): 1.26-fold and in subgroups with bDMARDs, female gender, age <50 years, and RF ≥ 15 IU/ml. AS (n=34): 1.71-fold and in subgroups with bDMARDs, age <50 years, female gender, CRP <3 mg/dl and ESR≤20 mm/h. VASC (n=25): 2.52-fold and in subgroups with cDMARDs, BASDAI ≤10 and >10, disease duration ≥120 months, age ≤50 years, female and male gender, CRP <3 mg/dl and ESR ≤20 mm/h. PsA (n=35): no significant changes. Linear regression analysis showed that CRP and ESR but not sVCAM-1 were correlated to each other (r=0.637, p<0.001). In addition, multiple linear regression showed that sVCAM-1 was independently associated with age and disease (RA, AS, VASC). However, sVCAM-1 had no impact on CRP, ESR and gender.

Conclusion: sVCAM-1 is an objective disease marker in patients with RA, AS and VASC. sVCAM-1 is not correlated with CRP and ESR and may thus provide additional information of disease activity. Prospective studies are needed to establish sVCAM-1 as a marker of rheumatic diseases, especially in vasculitis.

Disclosure of Interests: Mara Oleszowsky: None declared, Widian Laaraj: None declared, Tanja Kottmann: None declared, Matthias Seidel Grant/ Research support from: Pfizer, Actelion, Consultant for: Pfizer, Lilly

AB1331

URINE METABOLIC PROFILE IN RHEUMATOID ARTHRITIS DEVELOPMENT

Oliveira Marianne Schrader de, Barbara Jonson Bartikoski, Jordana Miranda de Souza Silva, Rafaela Cavalheiro Do Espírito Santo, Stephen Peter Young, Ricardo Xavier, Laboratory of Autoimmune Diseases. 1Cinica Hospital of Porto Alegre, Rheumatology Department, Porto Alegre, Brazil, 2Institute of Inflammation and Ageing, Birmingham, United Kingdom

Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by increased mortality and associated with metabolic disorders including dyslipidaemia, insulin resistance and cachexia. Since the metabolomic profile is known to vary in response to different inflammatory conditions, metabolome analysis could substantially contribute to diagnosis and prognosis.

Objectives: To analyse the urine metabolic profile and assess its correlation with body composition parameters and disease activity of RA patients.

Methods: Seventy-nine RA patients, according to ACR/EULAR 2010 classification criteria, aged between 40 and 70 years, were recruited and followed for 12 months. Disease activity, body composition, fatigue and urine metabolome were measured. Body composition was assessed by total body dual-energy x-ray absorptiometry (DXA) for measurement of appendicular lean mass index (ALMI). Disease activity was assessed by Disease Activity Score-28 with erythrocyte sedimentation rate (DAS28-ESR). Fatigue as assessed by the Functional Assessment of Chronic Illness Therapy (FACIT). Nuclear Magnetic Resonance spectroscopy (NMR) measurements were performed to evaluate the profile of metabolic changes during the 12mo follow-up, resulting in the identification of 48 metabolites in urine collected at the baseline and after one year. Frequency analysis, Pearson Correlation and Multivariate data analysis with orthogonal projections to latent structures (OPLS) method were performed and a statistical significance was considered as p<0.05.

Results: The study population was characterized by the majority of women (86.7%), mean age 56 years old, mean disease duration of 8 years, around 80% with positive anti-CPP and RF. There was a significant increase of citric acid, creatinine, L-serine and urea during the follow-up, metabolites that are involved in the muscular-related metabolism. There was no substantial variation in the DAS28-ESR (baseline: 3.8, after

Disclosure of Interests: None declared

Scientific Abstracts

12 months: 4.0) and there was no significant correlation between changes in the metabolome pattern and DAS28-ESR score (p=0.05).

Fatigue was negatively correlated with L-serine/creatinine (r: 0.4, p=0.001). Appendicular lean mass index (ALMI) also showed a positive difference which correlated with the increase of urea and creatinine (r: 0.3, p=0.019).

Conclusion: This prospective metabolic analysis indicated that the RA might be associated with amino acid metabolism alterations probably related to inflammation injury and fatigue. These findings suggest that urine metabolome analysis may be an interesting approach to study and monitor the systemic impact of RA.

Acknowledgment: Federal University of Rio Grande do Sul

Disclosure of Interests: MARIANNE SCHRADER DE OLIVEIRA: None declared, Barbara Jonson Bartkosi: None declared, Jordana Miranda de Souza Silva: None declared, Rafaela Cavalheiro do Espirito Santo: None declared, Stephen Peter Young: None declared, Ricardo Xavier Consultant for: Abbvie, Pfizer, Novartis, Janssen, Lilly, Roche


AB1332

COST EFFECTIVE BIOMARKER IN PREDICTING SLE IN DEVELOPING COUNTRIES – NEUTROPHIL LYMPHOCYTE RATIO (NLR), PLATELET LYMPHOCYTE RATIO (PLR), MPV

V S Srikanth1, M Gopala Krishna Pillai2, (Col.) Vishal Marwaha3, Shruthi Rajkumar1, 1AIMS Hospital, Internal Medicine, Kochi, India; 2AIMS Hospital, Rheumatology, Kochi, India

Background: SLE is a disease which is easily missed in regular clinical practice. In developing countries due to lack of investigation modalities and rheumatologist, early identification of the diseases process is delayed. By the time the patient reaches a higher medical care centre there is a significant time loss and advancement of the disease. NLR, PLR, RDW and MPV can be calculated from a complete blood count which will be available at any grass route health centre.

Objectives: To identify cost effective biomarkers in predicting SLE in developing countries. Focussing on markers - Neutrophil Lymphocyte Ratio (NLR), Platelet Lymphocyte Ratio (PLR), MPV.

Methods: This is a retrospective hospital based observational study conducted screening patients admitted from January 2016- November 2018 in with a diagnosis of SLE. We identified 150 patients with SLE and their NLR, PLR, and MPV data were collected and were correlated with equal control group without SLE

Results: We found that NLR, PLR, and MPV were highly significant with a p-value of 0.001 to be used as bio marker and also when further analysis was done using ROC curve with an area under curve of 76%, 81% and 78% respectively when compared with the control group.

Conclusion: We conclude that NLR,PLR and MPV is a cost-effective bio marker which costs (< 1 Euro) in predicting SLE and also play a great monitoring role follow-up referring patient to higher centre for biopsy at a golden period which will aid in early management which will limit the mortality and morbidity associated with the disease.

REFERENCES


Disclosure of Interests: None declared


AB1333

CELL-FREE DNA AND BIOLOGICAL TREATMENT IN PATIENTS WITH RHEUMATOID ARTHRITIS

Vanda Mlynarikova1, Frantisek Mais1, 2,3 Peter Celic2, Barbora Vlkova2, Emoke Stenova3, 1National Institute of Rheumatic Diseases, Rheumatology Department, Piestany, Slovakia (Slovak Republic); 2Comenius University Faculty of Medicine, Institute of Molecular Biomedicine, Bratislava, Slovakia (Slovak Republic); 3Comenius University Faculty of Medicine, Institute of Pathophysiology, Bratislava, Slovakia (Slovak Republic); 4University Hospital, Comenius University Faculty of Medicine, 1st Department of Internal Medicine, Bratislava, Slovakia (Slovak Republic)

Background: Cell free DNA (cfDNA) are DNA fragments released from the cell nucleus into extracellular compartment and is therefore detectible in plasma or serum. The most common reason for this release is tissue damage, cell death and inflammation of diverse origin. In regard to autoimmune diseases, increased levels of cfDNA has been found in plasma/serum in patients with systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and Sjogren’s syndrome. The results of some published works, appointing the correlation between levels of cfDNA and RA activity, are controversial, that’s why the position of cfDNA as a potential new biomarker remains unclear.

Objectives: The aim of our study was to describe the effect of biological therapy on the concentration of cfDNA and explore the correlation between therapeutic response DAS28 score and cfDNA levels. This potential correlation could define cfDNA as a new marker of treatment response and also potentially also clarify the role of cfDNA in the pathogenesis of RA.

Methods: Plasma samples of 40 patients with RA were collected before, as well as 3 and 12 months after starting treatment with tumor necrosis factor α-inhibitor (TNFα-inhibitor). Total cfDNA was quantified fluorometrically. Treatment response was evaluated by using DAS 28 scoring system and C-reactive protein.

Results: The treatment with TNFα-inhibitors showed statistically significant changes of DAS28 and cfDNA. According the EULAR treatment response defined by DAS28 changes, patients with good response showed statistically significant decrease of cfDNA in month 3 (p<0.005), but the improvement in month 12 was just on the border of statistical significance (p=0.059). There were only slight changes in group with moderate response DAS28 response in month 12 (p=0.054). In the entire group there was found slight positive (r =0.44), statistically significant (p=0.0073) correlation between the levels of cfDNA and DAS 28 score after 12 month of treatment.

Conclusion: Even if treatment with TNFα-inhibitors decreases plasma cfDNA, there are other markers with better correlation with disease activity. We consider, that the changes in cfDNA levels after biological treatment could determine the role cfDNA more as a consequence of the inflammation, rather than the cause of inflammation in this autoimmune disease, but further research is needed.

REFERENCES


Disclosure of Interests: None declared
