AUTO-IMMUNE AND INFLAMMATORY DISEASES IN CHILDREN WITH SICKLE CELL DISEASE: DIAGNOSTIC AND THERAPEUTIC ISSUES

Caroline Vint1, Corinne Guillot2, Patrick Berthaim1, Florence Missud3, Mariane De Montalembert1, Lahoueri Amor1, Cécile Arnoud2, Oussama Charara4, Vincent Gadjo5, Véronique Hengten6, Annie Kamdem7, Sylvie Nathanomy7, Brigitte Bader-Meunier8, Isabelle Melki9, Isabelle Koné-Pault9, Pierre Quartier1, Loïc De Pontual3, Luu-Ly Pham1, J.Verdier hospital, Bondy, France, 2Bicètre hospital, Kremlin Bicêtre, France, 3R.Débet hospital, Paris, France, 4Necker hospital, Paris, France, 5CHIC, Creil, France, 6A.Mignot Hospital, Versailles, France, 7A.Béclère hospital, Clamart, France

Background: Coexistent auto-immune and inflammatory diseases (AIID) and sickle cell disease (SCD) have been recently described in adults but the characteristics of children, however its frequency and physiopathology remain unclear (1–6).

Objectives: The aim of this study is the analysis of clinical and biological characteristics at AIID diagnosis and the evolution under treatment in children with SCD.

Methods: Between May 1991 and March 2018, 35 of 3,800 SCD children diagnosed with AIID in seven hospitals in Paris and suburb were analyzed in a retrospective survey.

Results: Thirty-five patients reported 44 AIID: autoimmune liver disease (AILD, n=13), inflammatory bowel disease (IBD, n=7), juvenile idiopathic arthritis (JIA, n=6), systemic lupus erythematosus (n=5), autoimmune hemolytic anemia (n=3), Sjögren’s syndrome (n=2), histiocytic necrotizing lymphadenitis (n=2), vasculitis (n=2), myasthenia gravis (n=2), sarcoidosis (n=2), inflammatory uveitis (n=1), scleroderma/juvenile dermatomyositis (n=1). Median age at diagnosis was 10 [2–18] years. The mean delay between first symptom and diagnosis was 15.5 (± 29) months. The time of diagnosis was significantly longer for patients with JIA compared to other AILD (63 versus 10 days, p=0.004). Sixteen patients (45.7%) had hypergammaglobulinemia > 20 g/L at diagnosis. AILD had a hypergammaglobulinemia at the time of diagnosis (30.0g/L), with a statically significant decrease at the end of follow-up (18.2g/L, p=0.0048). Among 21 patients (60%) treated with systemic steroids, it triggered vaso-occlusive crisis in 14 (66.7%), one acute chest syndrome, one transient ischemic attack. Thirteen of 35 patients (37.1%) were managed with biotherapy for AIID, well tolerated. Three patients (8.6%) underwent stem cell transplantation, one died of a cortico-resistant and multipolar graft versus host reaction, two were cured of both AIID and SCD. Nine severe infections were reported, four under steroids, five under biotherapy.

Conclusion: Diagnosis and therapeutic care of coexistent auto-immune and inflammatory diseases are difficult and challenging in children with SCD. Annual monitoring of inflammatory markers could be recommended to detect AIID earlier and prevent diagnostic delay in case of high ascension in SCD patients.

REFERENCES

Disclosure of Interests: Caroline Vint: None declared, Corinne Guillot: None declared, Patricia Benhaim: None declared, Florence Missud: None declared, Mariane De Montalembert: None declared, Lahoueri Amor: None declared, Cécile Arnoud: None declared, Oussama Charara: None declared, Vincent Gadjo: None declared, Véronique Hengten Consultant for: Sobi, Novartis, Abbvie, Speakers bureau: Novartis, Anne Kamdem: None declared, Sylvie Nathanomy: None declared, Brigitte Bader-Meunier: None declared, Isabelle melki: None declared, Isabelle Koné-Pault Grant/ research support from: SOBI has supported drug product (anakinra) for the presented study, Consultant for: SOBI, Novartis, Pfizer, Abbvie, UCB, CHUGAI, ROCHE, Pierre Quartier Consultant for: Abbvie, Chugai-Roche, Lilly, Novartis, Novimmune, Sanofi, and SOBI, Consultant for: Abbvie, Chugai-Roche, Lilly, Novartis, Novimmune, Sanofi, and SOBI, Speakers bureau: AbbVie, BMS, Chugai-Roche, Novartis, Pfizer, and SOBI, Loïc De Pontual: None declared, Luu-Ly Pham: None declared


AB1072 UVEITIS IN PEDIATRIC RHEUMATOLOGY: TERTIARY CENTER EXPERIENCE IN TURKEY

Zahide Ekici Tekin1, Gulcin Otar Yener2, Ebru Nevir Yetin3, Selin Akbulut4, Selcuk Yalcinkayasel5, Pamukkale University Faculty of Medicine, Pediatric Rheumatology, Denizli, Turkey; 2Pamukkale University Faculty of Medicine, Ophthalmology, Denizli, Turkey

Background: Since pediatric uveitis is generally asymptomatic, the diagnosis and treatment may be mostly delayed. Severe complications and visual loss may be observed even at the initial visit. Pediatric uveitis is tend to be chronic, persistent, recurrent, and the management may be complex (1).

Objectives: The aim of this study is to report epidemiology, etiology, clinical features, management and the outcomes of non infectious pediatric uveitis at a tertiary pediatric rheumatology center in Turkey.

Methods: The clinical records of the patients with non infectious uveitis who were followed up by department of pediatric rheumatology and ophthalmology were reviewed, from January 2013 to June 2018, retrospectively. The inclusion criteria were as follows being age ≤ 16 years, following up at least 6 months in both the ophthalmology and pediatric rheumatology clinics. Uveitis was categorized anatomically according to the Standardization of Uveitis Nomenclature criteria (2).

Results: Of 37 patients (67 eyes), 45.9% were female. Mean age of onset was 8, 5 ± 4, 4 years (1.6 - 15.8), mean follow-up was 60 ± 42 months (6 - 191). The general features of uveitis were anterior, idiopathic and bilateral in this study similar to literature (Table 1).The most common systemic diseases associated with uveitis were juvenile idiopathic arthritis (JIA); Two patients improved with local medications, while the remaining 35 patients required systemic treatments such as short-time (oral/l) corticosteroids (CS) in 94.5% of them, methotrexate (MTX) in 86.4%, azathioprine (AZA) in 5.4%, adalimumab (ADA) in 67.5%, tocilizumab (TCB) in 2.7%. In 26.1% of patients receiving ADA who did not respond to standard dose of ADA, we had to shorten the dosage intervals of ADA from every 2 weeks to every week. At least 1 ocular complication was observed in 83.7% of the patients, such as cataract, glaucoma, band keratopathy, synéchiae, macular edema and retinal detachment. Four (10.8%) patients had moderate visual loss and 6 (16.2%) patients severe visual loss (3). The prevalence of surgery in our study was 18.9% for cataract and glaucoma treatment.

Conclusion: Diagnosis and management of uveitis in childhood is complicated. Despite the new medication options, the advancements in diagnostics and surgical techniques, the complications are still high. Usage of shorter dose interval of ADA may be an alternative to control the disease in patients with unresponsive to standard dosage of ADA. However, large-scale clinical trials are required to assess the efficacy and safety of this treatment.

REFERENCES
Disclosure of Interests: None declared

Abstract AB1072: Table 1. Clinical features of patients according to the anatomical classification of uveitis.

<table>
<thead>
<tr>
<th></th>
<th>Anterior uveitis</th>
<th>Intermediate uveitis</th>
<th>Posterior uveitis</th>
<th>Panuveitis</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>9/24 (3.3%)</td>
<td>6 (16.2%)</td>
<td>1 (2.7%)</td>
<td>0</td>
<td>17 (4.1%)</td>
</tr>
<tr>
<td>Male</td>
<td>12 (32.4%)</td>
<td>6 (16.2%)</td>
<td>1 (2.7%)</td>
<td>2 (5.4%)</td>
<td>20 (54%)</td>
</tr>
<tr>
<td>Ocular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>3 (8.1%)</td>
<td>3 (8.1%)</td>
<td>0</td>
<td>1 (2.7%)</td>
<td>7 (18.9%)</td>
</tr>
<tr>
<td>Bilateral</td>
<td>18 (48.6%)</td>
<td>9 (24.3%)</td>
<td>1 (2.7%)</td>
<td>0</td>
<td>30 (81%)</td>
</tr>
<tr>
<td>Etiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic JIA</td>
<td>13 (35.1%)</td>
<td>11 (29.7%)</td>
<td>0</td>
<td>2 (5.4%)</td>
<td>26 (70.2%)</td>
</tr>
<tr>
<td>Behcet Disease</td>
<td>5 (13.5%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5 (13.5%)</td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>1 (2.7%)</td>
<td>0</td>
<td>1 (2.7%)</td>
<td>0</td>
<td>2 (5.4%)</td>
</tr>
<tr>
<td>TINU</td>
<td>3 (8.1%)</td>
<td>0</td>
<td>1 (2.7%)</td>
<td>0</td>
<td>5 (13.5%)</td>
</tr>
</tbody>
</table>

Table 1 shows the characteristics of all 4,165 patients according to the anatomical classification of uveitis.

<table>
<thead>
<tr>
<th></th>
<th>21 cases</th>
<th>12 cases</th>
<th>1 case</th>
<th>3 cases</th>
<th>37 cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender Female</td>
<td>9/24 (3.3%)</td>
<td>6 (16.2%)</td>
<td>1 (2.7%)</td>
<td>0</td>
<td>17 (4.1%)</td>
</tr>
<tr>
<td>Gender Male</td>
<td>12 (32.4%)</td>
<td>6 (16.2%)</td>
<td>1 (2.7%)</td>
<td>2 (5.4%)</td>
<td>20 (54%)</td>
</tr>
<tr>
<td>Ocular Unilateral</td>
<td>3 (8.1%)</td>
<td>3 (8.1%)</td>
<td>0</td>
<td>1 (2.7%)</td>
<td>7 (18.9%)</td>
</tr>
<tr>
<td>Ocular Bilateral</td>
<td>18 (48.6%)</td>
<td>9 (24.3%)</td>
<td>1 (2.7%)</td>
<td>0</td>
<td>30 (81%)</td>
</tr>
<tr>
<td>Etiology Idiopathic JIA</td>
<td>13 (35.1%)</td>
<td>11 (29.7%)</td>
<td>0</td>
<td>2 (5.4%)</td>
<td>26 (70.2%)</td>
</tr>
<tr>
<td>Etiology Behcet Disease</td>
<td>5 (13.5%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5 (13.5%)</td>
</tr>
<tr>
<td>Etiology Sarcoidosis</td>
<td>1 (2.7%)</td>
<td>0</td>
<td>1 (2.7%)</td>
<td>0</td>
<td>2 (5.4%)</td>
</tr>
<tr>
<td>Etiology TINU</td>
<td>3 (8.1%)</td>
<td>0</td>
<td>1 (2.7%)</td>
<td>0</td>
<td>5 (13.5%)</td>
</tr>
</tbody>
</table>

Background: Last year the International League of Associations for Rheumatology (ILAR) classification criteria for juvenile idiopathic arthritis (JIA), [1] were challenged by the provisional Paediatric Rheumatology International Trials Organisation (PRINTO) classification criteria, [2] Four disorders were proposed: (a) systemic JIA; (b) rheumatoid factor (RF)-positive JIA; (c) enthesis/spondylitis-related JIA; and (d) early-onset antinuclear antibody (ANA)-positive JIA. Early-onset ANA-positive JIA is defined by: arthritis for ≥ 6 weeks, and early-onset (< 6 yrs), and presence of 2 positive ANA tests with a titer ≥ 1:160 at least 3 months apart with the exclusions of having systemic JIA, RF-positive arthritis, or enthesis/spondylitis-related JIA.

Objectives: To evaluate the shifts from the original subtypes of JIA in the new disorder of early-onset ANA-positive JIA.

Methods: This study used data from the international PRINTO based registry regarding pharmacovigilance in JIA called Pharmachild [3]. For this analysis we used the data of 4,165 patients completely categorized following the ILAR ‘oligoarthritis’, ‘RF-negative polyarthritis’, ‘psoriatic arthritis’ and ‘undifferentiated JIA (UJIA)’ subtypes and with complete determination of ANA status. These patients were if possible reclassified in the early-onset ANA-positive JIA according to the provisional PRINTO classification criteria.

Results: Table 1 shows the characteristics of all 4,165 patients according to the ILAR criteria. Of this final set of 4,165 patients, 1279 (30.7%) were ANA-positive JIA according to the provisional PRINTO classification criteria.

Disclosure of Interests: Vera Mars: None declared, Joost F. Swart: None declared, Gabriella Giancane: None declared, Sytze De Roock: None declared, Anne Estmann: None declared, Marija Jelusic: None declared, Estefania Moreno Ruzafa: None declared, Jaime de Inocencio: None declared, Jelena Vojinovic: None declared, Agustin Remesal: None declared, M Laday: None declared, Rolando Cimaz: None declared, A V. Cochio: None declared, Inmaculada Calvo: None declared, M Harjacek: None declared, Nico Wulfraat: None declared, Nicolo Ruperto: None declared, UMC Utrecht, Undergraduate / Medical student, Utrecht, Netherlands; Wilhelmina Children's Hospital / UMC Utrecht, Pediatric Rheumatology, Utrecht, Netherlands; Paediatric Rheumatology International Trials Organisation, Genova, Italy.

REFERENCE

Disclosure of Interests: Vera Mars: None declared, Joost F. Swart: None declared, Gabriella Giancane: None declared, Sytze De Roock: None declared, Anne Estmann: None declared, Marija Jelusic: None declared, Estefania Moreno Ruzafa: None declared, Jaime de Inocencio: None declared, Jelena Vojinovic: None declared, Agustin Remesal: None declared, M Laday: None declared, Rolando Cimaz: None declared, A V. Cochio: None declared, Inmaculada Calvo Grant/research support from: received research grants from Pfizer, Roche, Novartis, Clementia, Sanofi, MSD, BMS and GSK, Consultant for: Advisory boards; Novartis, AbbbVie, Speakers bureau: AbbVie, Roche, Novartis, SOBI, M Harjacek: None declared, Nicolo Wulfraat: None declared, Nicolo Ruperto Grant/research support from: The Gaslini Hospital, where NR works as full-time public employee, has received contributions (> 10,000 USD each) from the following industries in the last 3 years: BMS, Eli-Lilly, GlaxoSmithKline, H Hoffmann-La Roche, Janssen, Novartis, Pfizer, Sobi. This funding has been reinvested for the research activities of the hospital in a fully independent manner, without any commitment with third parties., Consultant for: Received honoraria for consultancies or speaker bureaus (< 10,000 USD each) from the following pharmaceutical companies in the past 3 years: Abylin, AbbVie, Astrazeneca-Medimmune, Biogen, Boehringer, Bristol-Myers Squibb, Eli-Lilly, EMD Serono, GlaxoSmithKline, Hoffmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, Sanofi/Servier, Sinegir, Sobi and Takeda., Speakers bureau: Received honoraria for consultancies or speaker bureaus (< 10,000 USD each) from the following pharmaceutical companies in the past 3 years: Abylin, AbbVie, Astrazeneca-Medimmune, Biogen, Boehringer, Bristol-Myers Squibb, Eli-Lilly, EMD Serono, GlaxoSmithKline, Hoffmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, SanofiServier, Sinegir, Sobi and Takeda.

AB1072C: CHILDREN WITH JUVENILE IDIOPATHIC ARTHRITIS THE CORRELATION BETWEEN CAROTID INTIMA-MEDIA THICKNESS AND MARKERS OF INFLAMATION TO DETERMINE PRE-CLINICAL ATHEROSCLEROSIS

Mustafa Armutlu, Ruhan Düşünüş, Ayseven Pac Kisaarslan, Göca Koç, Betul Sözen, Ferhan Elmas, Muammer Hakan Poyrazoglu, Zubeyde Gunduz. 1' Erciyes University Faculty of Medicine, Pediatrics, Kayseri, Turkey; 2' Erciyes University Faculty of Medicine, Pediatric Rheumatology, Kayseri, Turkey; 3' Erciyes University Faculty of Medicine, Pediatric Radiology, Kayseri, Turkey; 4' İzmir Katip Celebi University, Biostatistics, İzmir, Turkey.

Background: Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in childhood. JIA is a heterogeneous group of disorders with different disease progression and prognosis. Cardiovascular