EFFECTIVENESS OF INFLUENZA VACCINE IN TNF INHIBITORS TREATED PATIENTS

Giovanni Adami, Angelo Fassio, Giovanni Orsolini, Alessandro Gioio, Davide Gatti, Maurizio Rossini. University of Verona, Rheumatology Unit, Verona, Italy

Background: Tumor Necrosis Factor-α inhibitors (TNFi) are immunosuppressive therapies that are known to increase infectious risk. Indeed, patients affected by TNFi requiring conditions are at higher risk of influenza compared with healthy controls. Furthermore, mildly reduced seroconversion rate after influenza vaccination had been reported in TNFi-treated patients. Nonetheless the immune response is considered large enough to recommend influenza vaccination in all patients affected by rheumatoid arthritis, regardless of treatment. However, there are data showing that patients are not being vaccinated as recommended. In addition, given that subjects with autoimmune conditions treated with TNFi are at higher risk for influenza, the exact number needed to vaccinate (NNV) for this condition is still unknown.

Objectives: We sought to determine the NNV for influenza in TNFi treated patients and the cost for preventing one case of influenza compared with general population.

Methods: The present analysis included data from cohorts of healthy subjects [1] and TNFi treated patients [2]. We calculated NNV for preventing one case of influenza in each cohort. NNV is the required number of patients receiving vaccination to prevent one case of a given infectious disease. NNV is the inverse of the absolute risk reduction (ARR), which is calculated as following: Control Event Rate (CER) – Experimental Event Rate (EER). In addition, the NNV gives us the opportunity to calculate the cost for preventing one case of influenza, assuming a cost per vaccine from 20 to 40 $.

Results: In 71,221 healthy individuals influenza vaccination reduced influenza rate from 2.3% in individuals without vaccination (CER = 0.023) to 0.9% in vaccinated individuals (EER = 0.009). The calculated NNV is 71 (NNV = 1/ARR, ARR = 0.023 – 0.009), namely 71 healthy adults need to be vaccinated to prevent one of them experiencing influenza. The costs to prevent a case of clinical influenza in healthy controls would range from 1,420 to 2,840 $. On 15,132 patients exposed to adalimumab, influenza-related adverse events have been reported in 55 of 382 not-vaccinated patients (CER = 0.14) and in 8 of 179 vaccinated patients (EER = 0.04). In this population (mean age 53.5 years, predominantly white women) the NNV of influenza vaccines is 10 (NNV = 1/ARR, ARR = 0.144 – 0.045) and preventing a case of influenza would cost approximately from 200 to 400 $, which is largely lower when compared to healthy controls’ costs. The relative risk of influenza vaccination in healthy individuals (2.3% to 0.9%, RR 0.41, 95% confidence interval (CI) 0.36 to 0.47) and rheumatoid arthritis patients treated with TNFi (14.4% to 4.5%, RR 0.31, 95% CI 0.15 to 0.64) are similar, while there is a large difference between NNVs (71 vs 10) (Figure 1).

Conclusion: When estimating the effectiveness of vaccinations, clinicians should always include the calculation of the NNV and not only the calculation of relative risk, which might be misleading. The difference in NNV for influenza between healthy individuals and TNFi treated patients is due to a greater absolute risk for influenza in the latter group. The present analysis provides further evidences on the effectiveness of influenza vaccination in patients affected by rheumatoid arthritis receiving treatment with TNFi and should represent a call-to-action for all rheumatologists to consider vaccination in such patients.

REFERENCES:

Disclosure of Interests: Giovanni Adami: None declared, Angelo Fassio: Speakers bureau: AbbVie Pharma, Giovanni Orsolini: Speakers bureau: Grunenthal, Alessandro Gioio: None declared, Davide Gatti: Speakers bureau: AbbVie, Lilly, Janssen-Cilag, Mundipharma, Pfizer, Harald Herkner: None declared, Josef S. Smolen: None declared


Figure 1. Number Needed to Vaccinate (NNT) for influenza in the general population and in patients treated with Tumor Necrosis Factor-α inhibitors (TNFi)

Disclosure of Interests: Giovanni Adami: None declared, Angelo Fassio: Speakers bureau: AbbVie Pharma, Giovanni Orsolini: Speakers bureau: Grunenthal, Alessandro Gioio: None declared, Davide Gatti: Speakers bureau: AbbVie, Lilly, Janssen-Cilag, Mundipharma, Pfizer, Maurizio Rossini: None declared

How to treat SpA? From physiotherapy to new IL-17 blocking drugs

DUAL NEUTRALISATION OF IL-17A AND IL-17F WITH BIMEKIZUMAB WAS ASSOCIATED WITH IMPROVEMENTS IN PATIENT-REPORTED AND QUALITY-OF-LIFE OUTCOMES IN PATIENTS WITH ACTIVE ANKYLOSING SPONDYLITIS: RESULTS FROM A PHASE 2B, RANDOMISED, DOUBLE-BLIND, PLACEBO-CONTROLLED, DOSE-RANGING STUDY

Désirée van der Heijde1, Lianne S. Gensler2, Atul Deodhar3, Xenofon Baraliakos4, Denis Poddubnyy5, Mary Katherine Farmer6, Dominique Baeten7, Jason Coarse8, Marga Oortgiesen9, Maxime Dougados9,10. University of Washington, Seattle, United States of America; 2UCSF, San Francisco, United States of America; 3CHSU, Portland, United States of America; 4Ruhr-University Bochum, Herne, Germany; 5Charité – Universitätsmedizin Berlin, German Rheumatism Research Centre, Berlin, Germany; 6UCB Pharma, Raleigh, United States of America; 7UCB Pharma, Brussels, Belgium; 8Cochin Hospital, Paris, France

Background: Ankylosing spondylitis (AS) is a chronic immune-mediated inflammatory disease primarily affecting the sacroiliac joints and spine, causing pain, stiffness and loss of mobility and function. These manifestations can severely impair patients’ quality of life (QoL).1 Dual neutralisation of IL-17 in addition to IL-17A has been shown to reduce inflammation to a greater extent than inhibition of IL-17A alone in disease–relevant cell models. Results previously reported from this Phase 2b study (NCT02963506) demonstrated that, during the 12-week double-blind treatment period, bimekizumab provided substantial clinical improvements in disease outcome measures, including Assessment of SpondyloArthritis international Society 40% (ASAS40), in patients with active AS.3

Objectives: To assess the impact of bimekizumab on patient-reported and QoL outcomes at Week 12 in patients with active AS.

Methods: In this 45-week Phase 2b study (double blind to Week 12 then dose blind to Week 48), 303 patients with active AS (Beth SpondyloArthritis Disease Activity Index [BASDAI] ≥ 4; spinal pain ≥ 4 [0–10 numerical rating scale]), fulfilling the modified New York criteria, were randomised 1:1:1:1:1 to receive subcutaneous bimekizumab 16mg, 64mg, 160mg, 320mg or placebo Q4W for 12 weeks. Prior exposure to one anti-TNF therapy was permitted. Secondary and other endpoints included: BASDAI >50% improvement in BASDAI (BASDAI 50). Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Quality of Life (BASQoL) and Patient’s Global Assessment of Disease Activity (PGADA) at Week 12. Safety was also assessed.

Results: Overall, 297 (98.0%) patients completed the 12-week double-blind period. Baseline scores on patient-reported and QoL outcomes were similar across treatment groups (Table). At Week 12, BASDAI 50 was achieved by 23.7–43.9% of bimekizumab-treated patients versus 11.9% receiving placebo. All bimekizumab doses were associated with greater reductions in individual BASDAI components, including: fatigue (range: −1.5 to −2.5 vs −0.8); neck, back or hip pain (−2.0 to −3.3 vs −1.2); discomfort due to tenderness to touch or pressure (−1.6 to −3.3 vs −1.2); morning stiffness (−1.0 to −3.3 vs −1.4). The overall incidence of treatment-emergent adverse events was 89/243 (36.6%) for bimekizumab–treated patients versus 23/60 (38.3%) for placebo; the majority were of mild or moderate intensity. No unexpected safety findings were observed.

Conclusion: Dual neutralisation of IL-17A and IL-17F with bimekizumab was associated with improvements in patient-reported and QoL outcomes including pain, fatigue and tenderness in patients with active AS after 12 weeks of treatment. No new safety findings were observed versus previous studies of bimekizumab.4,5

REFERENCE:

Disclosure of Interests: Désirée van der Heijde Consultant for: AbbVie, Amgen, Astellas, AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim, Celgene, Daichi, Eli-Lilly, Galapagos, Gilead, GlaxoSmithKline, Janssen, Merck, Novartis, Pfizer, Regeneron, Roche, Sanofi, Takeda, Union Chimique Belge, Lianne S. Gensler Grant/research support from: Abbvie, Amgen, UCB Pharma, Consultant for: Novartis, Lilly, Janssen, Atul Deodhar Grant/research support from: AbbVie, Amgen, Eli Lilly, GSK, Janssen, Novartis, Pfizer, and UCB. Consultant for: AbbVie, Amgen, BMS, Eli Lilly, Janssen, Novartis, Pfizer, and UCB. Consultant for: AbbVie, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Centocor, Chugai, Janssen, MSD, Novartis, Pfizer Inc, Roche and UCB. Consultant for: AbbVie, Pfizer, Merc Merck Sharp & Dohme, UCB Pharma, Novartis, Consultant for: AbbVie, Bristol-Myers Squibb, Boehringer Ingelheim, Celgene, Chugai, Janssen Biologics, Novartis, Pfizer, UCB Pharma, Galapagos, Speakers bureau: AbbVie, Chugai, Janssen, Novartis, Pfizer, UCB Pharma, Consultant for: AbbVie, Merc Merck Sharp & Dohme, Novartis, Consultant for: AbbVie, Bristol-Myers Squibb, Janssen, Merck Sharp & Dohme, Novartis, Pfizer, UCB Pharma, Speakers bureau: AbbVie, Bristol-Myers Squibb, Janssen, Merck Sharp & Dohme, Novartis, Pfizer, Roche, UCB Pharma, Mary Katherine Farmer Employee of: UCB Pharma, Consultant for: UCB Pharma, Employee of: UCB Pharma, Jason Coarse Employee of: UCB Pharma, Marga Oortgiesen Shareholder of: UCB Pharma, Employee of: UCB Pharma, maxime dougados Grant/research support from: AbbVie, Merc Merck Sharp & Dohme, Novartis, Consultant for: AbbVie, Bristol-Myers Squibb, Janssen, Merck Sharp & Dohme, Novartis, Pfizer, UCB Pharma, Mary Katherine Farmer Employee of: UCB Pharma, Dominique Baeten Consultant for: UCB Pharma, Employee of: UCB Pharma, Employee of: UCB Pharma, Consultant for: UCB Pharma, grant/research support from: Eli Lilly and Company, Pfizer, Abbvie, and UCB Pharma, Consultant for: Eli Lilly and Company, Pfizer, Abbvie, and UCB Pharma


NETAKIMAB REDUCES THE DISEASE ACTIVITY RADIOGRAPHIC AXIAL SPONDYLOARTHRITIS. RESULTS OF ASTERA STUDY

Inna Gavdyukova1, V Mazurov1, Shandor Erdes2, Tatiana Dubinina3, Olga Nemesmayova4, Elena Iliianova5, Elena Kundzer6, Nikolai Soroka7, Aleksandr Kastanayan7, Tatyan Dovgolova8, Elena Zhugrova9, Tatyana Piakina10, Pavel Shesterynya11, Tatyana Kropotina12, Olga Antipa13, Elena Smolyarchuk14, Oksana Tolupa15, Nadezhda Abudzhalieva16, Diana Kretchkova17, Ivan Gordeev18, Vadim Tyrenko19, Aleksandra Strelkova20, Anna Erneeva21, Ekaterina Chemysyeva22, Roman Ivanov23, Mchnkiv North-Western State Medical University, St-Petersburg, Russian Federation; 2Nasonova Research Institute of Rheumatology, Moscow, Russian Federation; 3Regional Clinical Hospital, Chelyabinsk, Russian Federation; 4Leningrad Region Clinical Hospital, St-Petersburg, Russian Federation; 5Healthcare Institution Municipal Clinical Hospital No 1, Minsk, Belarus; 6Scientific and Practical Center of Surgery, Transplantology and Hematology, Minsk, Belarus; 7Rostov State Medical University, Rostov-on-Don, Russian Federation; 8Road Clinical Hospital, Saratov, Russian Federation; 9Municipal Inpatient Facility No 38, St-Petersburg, Russian Federation; 10Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russian Federation; 11Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; 12Municipal Clinical Hospital, Omsk, Russian Federation; 13Municipal Clinical Hospital No 1, Irkutsk, Russian Federation; 14Sechenov First Moscow State Medical University, Moscow, Russian Federation; 15Municipal Clinical Hospital No 4, Barnaul, Russian Federation; 16Kazan State Medical University, Kazan, Russian Federation; 17Regional Clinical Hospital, Smolensk, Russian Federation; 18City Clinical Hospital No 15, Moscow, Russian Federation; 19Kirill Military Medical Academy, St-Petersburg, Russian Federation; 20Novosibirsk First Clinical Hospital, Smolensk, Russian Federation; 21JSC BIOCAD, St-Petersburg, Russian Federation

Background: Efficacy and safety of netakimab (NTK), a humanized anti-IL17A antibody, was established in phase 2 clinical trials in patients (pts) with radiographic axial spondyloarthritis (r-axSpA) and psoriasis1.2

Objectives: The abstract presents 16-week data from ongoing ASTERA study (NCT03447704) in pts with active r-axSpA.

Methods: ASTERA is a phase 3 international double-blind placebo (PBO)-controlled study. 228 adult pts with r-axSpA active (BASDAI ≥ 4) despite the standard NSAIDs, were randomly assigned (1:1) to receive 120 mg NTK or PBO SC at Week (Wk) 0,1,2 and then q2w through Wk 16. After Wk 16 all pts will start to receive NTK up to Wk 52. Primary endpoint was ASAS40 rate at Wk 16.