In addition, analysis for transcription factor motif enrichment in the differentially accessible peaks of the ATAC-Seq analysis revealed motifs for TEAD2, RUNX family, and NFκB were less accessible, while motifs for JUN:FOS, NFκB, and E2F were more accessible during the inflammatome changes. These results indicate that H19X could promote or repress the activity of these candidate transcription factors by changing chromatin conformation at the sites of their consensus sequence.

Conclusion: ATAC-Seq in combination with microarray analysis identified candidate mechanism for the TGFβ regulated proinflammatory effects of H19 X including direct effects on chromatin organization and on transcription factors associated with fibrotic pathways.

Disclosure of Interests: Elena Pachera: None declared, Shervin Assassi: None declared, Gloria Salazar: None declared, João-Franc Bortelone: None declared, Jörg Distler: None declared, Gabriela Kania: None declared, Oliver Distler Grant/research support from: Actelion, Bayer, Boehringer Ingelheim and Mitsubishi Tanabe to investigate potential treatments of scleroderma and its complications, Consultant for: Prof. Distler has had consultancy relationship within the last 3 years with Actelion, AnaMar, Bayer, Boehringer Ingelheim, ChemomAb, espeRare foundation, Genentech/Roche, GSK, Inventiva, Italfarmaco, iQvia, Lilly, medac, MedImmune, Mitsubishi Tanabe Pharma, Pharmacyclics, Novartis, Pfizer, Sanofi, Serodapharm and UCB in the area of potential treatments of scleroderma and its complications. In addition, he had/had consultancy relationship within the last 3 years with A. Menarini, Amgen, Abbvie, GSK, Mepha, MSD, Pfizer and UCB in the field of arthritides and related disorders

OP0185

INFLAMMATION-DEPENDENT DECREASED EXPRESSION OF CD52 ON CIRCULATING CD14+ MONOCYTES FACILITATES ADHESION IN SYSTEMIC SCLEROSIS

Michal Rudnik1, Sara Stellato1, Przemyslaw Blyszczuk2,3,4, Karin Klingel3, Jörg Henes3, Carol Feghali-Bostwick5, Oliver Distler1, Gabriela Kania1.

1. Center of Experimental Rheumatology, University Hospital Zurich, Department of Rheumatology, Zurich, Switzerland; 2. Jülich Institute University Medical College, Department of Clinical Immunology, Krakow, Poland; 3. University Hospital Tübingen, Institute for Pathology and Neuropathology, Tuebingen, Germany; 4. University Hospital Tübingen, Department of Rheumatology, Tübingen, Germany; 5. Medical University of South Carolina, Division of Rheumatology and Immunology, Charleston, SC, United States of America

Background: During the course of systemic sclerosis (SSc), infiltration of inflammatory cells, including monocytes, into the organs is a major process leading to fatal fibrosis, remodelling and organ dysfunction. CD52 protein is highly expressed on CD4+ T-cells and plays an important role in the modulation of T-cell receptor signalling. Nevertheless, the function of this protein on monocytes is not completely understood.

Objectives: We aimed to functionally investigate the role of circulating CD14+ monocytes in the course of SSc with a special focus on monocyte adhesion and the influence of CD52 expression.

Methods: Biopsies from the heart, lungs and skin of SSc patients (n=11, 7 respectively) and healthy controls (HC) (n=10, 7 respectively) were analysed by immunohistochemistry for the presence of CD14+ cells. PolyA RNA sequencing of CD14+ monocytes isolated from peripheral blood of lcSSc (n=5, age=54.4 ±6.7), dcSSc patients (n=5, age=51.8±7.2) and age- and sex-matched HC (n=5, age=50.8±9.7) was performed using Illumina HiSeq 4000 platform. Differentially expressed genes were computed using DeSeq2 algorithm. Gene ontology and pathway analysis were performed using Metacore software and StringApp. Expression of molecular markers was confirmed on the protein level using flow cytometry (HC n=8, SSc n=22). Adhesion of CD14+ monocytes to immobilized ICAM1 and TNFα-stimulated endothelial cells was checked using the 96-well plate adhesion assay (HC n=8, SSc n=22). CD52 regulation in CD14+ monocytes from HC (n=8) was analysed on mRNA level upon stimulation with different concentrations of LPS (10 μg/ml, 25 μg/ml, 50 μg/ml) and IFNγ (200 U/ml, 1000 U/ml). CD52 expression and adhesion were measured using flow cytometry. CD52 was downregulated in SSc patients (p<0.05) and SSc CD14+ monocytes exhibited increased adhesion both to ICAM1-coated plates (p<0.01) and to TNFα-stimulated endothelial cells (p<0.05). CD52 mRNA was significantly increased in a dose-dependent manner after anti-inflammatory stimulation (IL-4, IL-13) and significantly decreased after inflammatory stimulation (LPS, IFNγ) (p<0.05). Overexpression of CD52 in THP-1 monocytes decreased adhesion to TNFα-stimulated endothelial cells (p<0.01). Accordingly, silencing of CD52 increased adhesion of THP-1 monocytes (p<0.01).

Conclusion: This is the first report pointing to an increased adhesion of peripheral blood CD14+ monocytes to ICAM1 and endothelial cells in SSc. Our results suggest the primary activation of monocytes in peripheral blood, which translates into renal organ infiltration in SSc patients. Finally yet importantly, we characterized a new function of CD52 molecule on monocytes and its possible contribution during the course of the disease.

Disclosure of Interests: Michal Rudnik: None declared, Mara Stellato: None declared, Przemyslaw Blyszczuk: None declared, Karin Klingel: None declared, Jörg Henes: None declared, Carol Feghali-Bostwick: None declared, Oliver Distler: Grant/research support from: Actelion, Bayer, Boehringer Ingelheim and Mitsubishi Tanabe to investigate potential treatments of scleroderma and its complications, Consultant for: Prof. Distler has had consultancy relationship within the last 3 years with Actelion, AnaMar, Bayer, Boehringer Ingelheim, ChemomAb, espeRare foundation, Genentech/Roche, GSK, Inventiva, Italfarmaco, iQvia, Lilly, medac, MedImmune, Mitsubishi Tanabe Pharma, Pharmacyclics, Novartis, Pfizer, Sanofi, Serodapharm and UCB in the area of potential treatments of scleroderma and its complications. In addition, he had/had consultancy relationship within the last 3 years with A. Menarini, Amgen, Abbvie, GSK, Mepha, MSD, Pfizer and UCB in the field of arthritides and related disorders, Gabriela Kania: None declared

OP0186

LINC00593+ STRONAL CELLS ARE KEY EFFECTOR CELLS IN MYOCARDIAL FIBROSIS AND DEFECTS OF THE CONDUCTION SYSTEM

Mara Stellato1, Michal Rudnik2, Florian Renoux3, Przemysiew Blyszczuk1,2, Elena Ostro4, Matthias Dewenter4, Petra Seebeck4, Elena Pachera1, Oliver Distler1, Gabriela Kania1.

1. University Hospital Heidelberg, Department of Rheumatology, Heidelberg, Germany; 2. Jülich Institute University Medical College, Department of Clinical Immunology, Krakow, Poland; 3. University Hospital Heidelberg, Department of Molecular Cardiology and Epigenetics, Heidelberg, Germany; 4. University of Zurich, Zurich integrative Rodent Physiology, Zurich, Switzerland

Background: Cardiac dysfunction is a significant cause of mortality in SSC due to inflammation, vasculopathy and fibrosis. In fibrotic conditions, the excessive number of fibroblasts, myofibroblasts and extracellular matrix in the myocardium may directly or indirectly affect the cardiac conduction system by different mechanisms. Myofibroblasts are the main players in cardiac fibrogenesis, but their origin in SSC remains unknown.

Objectives: To unravel the role of Fox-related antigen 2 (Fra2) in stromal cell activation, cardiac fibrosis and alteration of the conduction system.

Methods: Fra2 transgenic (tg) mice and Rag2-/- Fra2 tg mice were studied. Hearts from Fra2 tg and WT mice were analysed by immunohistochecistry (IHC) and immunofluorescence (IF). Cardiac function was assessed by echocardiography, electrocardiogram (ECG) and telemetry. Myocardial stromal (Ter119 CD45 CD31-, hereafter Lin-) gp38+ stromal cells were sorted and cultured in Spleen Cell Isolation Medium (Ter119 CD45 CD31-, hereafter Lin-) gp38+ stromal cells were sorted and cultured in Spleen Cell Isolation Medium. The cellular phenotype was evaluated by qPCR, with collagen, ADAM12 and periostin, indicating that myocardial Lin-gp38+ cells might be the main origin of cardiac fibrosis, contractility during the course of the disease. Therefore, we investigated whether these stromal cells might be responsible for fibrosis. The majority of Lin gp38+ cells co-expressed αSMMA, collagen, ADAM12 and periostin, indicating that myocardial Lin gp38+ cells might acquire a myofibroblast-like phenotype. Moreover, gp38 expression correlated with collagen deposition (R=0.9, p<0.001). The comparison between Lin gp38+ cells isolated from WT and Fra2 tg showed that both αSMMA total protein and αSMMA fibres were increased in Fra2 cells. Importantly, αSMMA fibres co-localized with stress fibres, resulting in a faster and stronger contraction capacity of Fra2 cells (p<0.0001, n=3). Proliferation of Fra2 cells was increased compared to WT (p<0.0001, n=5), while apoptosis was unchanged (p=0.335, n=5). Interestingly,
Rag2−/−Fra2−/−tg mice showed no fibrosis or Lin gp38+ cell expansion. ECG parameters of Rag2−/−Fra2−/−tg mice were not changed compared to controls, indicating that inflammation is necessary to acquire Fra2-driven fibrotic phenotype and defects in the conduction system.

Conclusion: Fra2 overexpression and inflammation foster stromal cell-to-myofibroblast differentiation, leading to cardiac fibrosis and defects of the conduction system. Targeting this process might be a therapeutic strategy for SSC patients with disorders of cardiac involvement.

Disclosure of Interests: Maria Stallone: None declared, Michal Rudniki: None declared, Florian Renoux: None declared, Przemyslaw Blaszczuk: None declared, Elena Osto: None declared, Matthias Dewenter: None declared, Petra Seebeck: None declared, Elena Pachera: None declared, Oliver Distler Grant/Research support from: Prof. Distler received research funding from Actelion, Bayer, Boehringer Ingelheim and Mitsubishi Tanabe to investigate potential treatment of scleroderma and its complications, Consultant for: Prof. Distler has had consultancy relationship within the last 3 years with AnAmar, Bayer, Boehringer Ingelheim, ChemomAb, espeRade foundation, Genentech/Roche, GSK, Inventiva, Italfarmaco, iOvia, Lilly, Medimmune, Mitsubishi Tanabe Pharma, Pharmacyclics, Novartis, Pfizer, Sanofi, Serodapharm and UCBB in the area of potential treatments of scleroderma and its complications. In addition, he had/has consultancy relationship within the last 3 years with A. Menanini, Amgen, Abbvie, GSK, Mepha, MSD, Pfizer and UCBB in the field of arthritis and related disorders, Gabriela Kania: None declared DOI: 10.1136/annrheumdis-2019-eular.6403

OP0187

RITUXIMAB AND CYCLOPHOSPHAMIDE COMPARISON FOR EFFICACY AND SAFETY IN THE PATIENTS WITH SYSTEMIC SCLEROSIS ASSOCIATED WITH INTERSTITIAL LUNG DISEASE

Olga Konary, Lidia P. Ananyeva, Lidmila Garzanova, Oxana Desinova, Olga Ovysyanikova, Maya Starovoytova. V.A. Nasonova Research Institute of Rheumatology, Moscow, Russian Federation

Background: Cyclophosphamide (CyP) is considered as a drug of choice for the treatment of interstitial lung disease (ILD) in the patients with systemic sclerosis (SSc). However, according to the literature, the use of CyP leads to rather limited and transient improvement of the pulmonary fibrosis. In this context the search for novel, more efficacious agents has been continued, such as attracting much attention retuximab (RTM).

Objectives: To compare the impact of CyP and RTM on SSc clinical manifestation and activity, and the safety of these agents in the open-label prospective non-randomized study.

Methods: 107 patients with the confirmed SSc diagnosis and ILD evidence based on HRCT findings were enrolled into the study. All patients received low-dose and moderate-dose prednisolone regimens. 36 patients (Group A) received parenteral CyP for 12±6 months at total dose 10.6±5 g (the average age 47±12 years, females 92%, SSc duration 5.0±4.8 years, diffused/localized forms 1.6/1), 71 patients (Group B) received RTM at total dose 1.43±0.66 g over the follow-up period 13.2±2 months (the average age 46±13 years, females 83%, SSc duration 5.6±4.4 years, diffused/localized forms 1.41); to 32 (45%) of them RTM was used to control patients. Evaluation of FVC time course in Groups A and B revealed significant FVC increase (p=0.009 and 0.001, respectively) and EScSG (p=0.00165 and 0.001, respectively). Increase in LVEF (61.8±7.3 to 63.6±7.3, p=0.02) was observed only in RTM-treated patients. Evaluation of FVC time course in Groups A and B revealed significant FVC increase (p=0.034 and 0.000045, respectively), with median increment about 5%. In Group A FVC 10% FVC increase was found in the third of the patients thus exceeding respective parameter in Group B (p=0.2). The patient percentage with FVC decrease by >10% was similar in both groups. During the follow-up period no change of the other studied parameters was observed.

The therapy was better tolerated in RTM-treated group: during RTM therapy adverse reactions emerged in significantly lower proportion of the patients (11/14%) compared with CyP-treated group (19/53%), p=0.0000.

OP0188

PATHOGENICITY OF FUNCTIONAL AUTOANTIBODIES AGAINST AT1R IN A MOUSE MODEL OF SYSTEMIC SCLEROSIS

Junping Yin1, Xiaogang Wang1, Xiaoyang Yue1, Gabriela Riemekasten2, Xinhua Yin1, Frank Petersen1, 1Research Center Borstel, Borstel, Germany; 2University of Lübeck, Lübeck, Germany

Background: Systemic sclerosis (SSc) is an autoimmune connective tissue disease featured by autoimmunity, fibrosis and vasculopathy. Although many auto-antibodies have been detected in the sera of patients with SSc, it is not clear whether they play a role in the pathogenesis of disease. It has been reported that autoantibodies against the angiotensin-II receptor type 1 (AT1R) are present in the sera of SSc patients and are associated with several clinical symptoms of the disease, suggesting that these autoantibodies may act as pathogenic drivers. Recently, our group has developed a novel mouse model for SSc by immunizing mice with human AT1R (hAT1R). From this model we were able to generate functional monoclonal antibodies agonizing AT1R.

Objectives: In the current study, we aim to clarify, whether B cells and antibodies directed against AT1R are involved in the pathogenesis of experimental SSc in vivo.

Methods: To investigate the role of B cells in the hAT1R-induced mouse model of SSc, we immunized B-cell deficient mice with hAT1R. Nine weeks after the first immunization, mice were sacrificed and sera and tissues were collected for further evaluation. To investigate the pathogenicity of anti-AT1R antibodies in the disease, monoclonal autoantibodies against hAT1R were applied to the ear of C57Bl/6 mice by single or repetitive injection. Mice were sacrificed 24 hours or 14 days after the first injection for single and repeated application, respectively, and ear and lung tissues were collected for further evaluation.

Results: Compared to the wild type C57Bl/6 mice, hAT1R-immunized B-cell deficient mice were resistant against experimental SSc with regard to autoantibody production, inflammation in the lung and skin, and skin fibrosis. Furthermore, both single and repetitive injection of monoclonal antibodies against hAT1R induced inflammation in ears of mice. Despite this local effect, repetitive injection of anti-AT1R monoclonal antibodies provoked also inflammation in the lung of mice.

Conclusion: Our data demonstrate that i) B cells are indispensable for the pathogenesis of the hAT1R-induced mouse model for SSc and ii) monoclonal antibodies against hAT1R can induce inflammation in mice. Therefore, our results support a role of autoantibodies against AT1R in the pathogenesis of SSc.

REFERENCES: