BTLA EXPRESSION IS REDUCED ON SLE B CELL SUBSETS

Annikka Wiedemann1, Ana-Luisa Stefanski1,2, Andreia Lino1, Thomas Dörner2

1Charité Universitätsmedizin Berlin, Dept. of Medicine, Rheumatology and Clinical Immunology, Berlin, Germany. 2University Hospital of Bern, Department of Rheumatology, Immunology and Allergology, Bern, Switzerland

Background: B- and T-lymphocyte attenuator (BTLA/CD272) is a co-receptor constitutively expressed on B cells [1, 2]. Upon B cell activation via the B cell receptor (BCR), BTLA co-localizes with Src homology region 2 domain-containing phosphatase-1 (SHP-1) and thus negatively regulates BCR signaling [2]. A recent study found that CD4+ T cells from SLE patients fail to upregulate BTLA upon activation [3], however, data on BTLA expression and function for B cells in autoimmunity is missing.

Objectives: To assess BTLA expression on conventional naïve (CD20+CD27), conventional memory (CD20+CD27+) B cells and on CD27−/CD38+ expressing plasma cells (PC) in peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE) and healthy donors (HD).

Methods: PBMCs were isolated from EDTA blood taken from 7 female SLE patients (age 38, mean disease activity 5 (SLEDAI)) and 6 female HD (mean age 28) by Ficoll density gradient centrifugation according to the manufacturer’s protocol. Cells have been stained and expression of BTLA was assessed by flow cytometry.

Results: Analysis of BTLA surface expression on B cell subsets in SLE patients and HD revealed decreased expression of BTLA on naïve SLE B cells (p=0.0173, Mann-Whitney U Test (MWU), BTLA median fluorescence intensity (MFI) 9006±1450) compared to naïve HD B cells (11957±941). A similar tendency was found for memory SLE B cells (p=0.0823 MWU) compared to HD memory but not SLE PC and HD PC. Remarkably, an inverse correlation was found for BTLA expression on naïve SLE B cells and SLE PC with Siglec-1 expression on monocytes (p=0.0333 Spearman’s rank correlation (SRC) naïve B cells, p=0.0167 PC), a marker for interferon signature, and the same trend was seen for SLE memory B cells (p=0.0583 SRC). Inverse correlation of BTLA expression was also found with disease activity (SLEDAI) with these B cell populations but did not reach significance (p=0.0583 naïve SLE B cells, p=0.1361 memory B cells, p=0.0833 PC).

Conclusion: Herein, we document that B cell subsets of SLE patients express lower levels of the negative regulator BTLA than HD. Additionally, an inverse correlation between BTLA expression on B cell subsets and Siglec-1 on monocytes were found suggesting its involvement in disease and consideration BTLA as therapeutic target in SLE. We hypothesize that reduced BTLA expression is a feature of post-activated B cells. Further studies need to delineate functional properties of BTLA expression and activation in autoimmune B cells.

REFERENCES:

Disclosure of Interests: Annika Wiedemann: None declared, Ana-Luisa Stefanski: None declared, Andreia Lino: None declared, Thomas Dörner Grant/research support from: Eli Lilly, Janssen, Roche, UCB Pharma, Consultant for: Eli Lilly, Janssen, Roche, UCB Pharma, Speakers bureau: Eli Lilly, Janssen

THE IMPACT OF KETOGENIC DIET AND HIGH-FAT-HIGH-GLUCOSE DIET IN PRISTANE INDUCED LUPUS-LIKE NEPHRITIS MURINE MODEL

Chao-Yi Wu1,2, Huang-Yu Yang1, Jing-Long Haung1,2, Linkou Chang Gung Memorial Hospital, Department of Pediatrics. Division of Allergy, Asthma, and Rheumatology, Taoyuan city, Taiwan, Republic of China. 3Linkou Chang Gung Memorial Hospital, Department of Nephrology, Taoyuan city, Taiwan, Republic of China

Background: Systemic lupus erythematosus is a chronic systemic inflammatory disease which commonly involves kidneys[1]. Aside from the use of conventional immunosuppressants, dietary components and metabolites may likely affect our immune system.

Objectives: An interest in the anti-inflammatory property of ketogenic diet (KD) has recently come to attention. It not only alters the balance between Th17 and Treg cells[2], its metabolite, beta-hydroxybutyrate was known to block NLRP3 inflammasome-mediated inflammation[3-6]. High-fat-high-glucose diet (HFGD), on the other hand, was known for a proinflammatory property. Aim to understand the immune modulatory effect of KD and HFGD in cases with systemic lupus erythematosus, a chronic systemic inflammatory disease with glomerulonephritis, pristane induce lupus like nephritis murine model was used.

Methods: Pristane induced lupus nephritis mice were divided in to groups fed with regular chow (CD), KD and HFGD along with healthy controls. The diets were kept for 6 months with regular body weight and urine protein monitoring. Serum samples were collected for metabolic evaluation and urine immune survey bimonthly. The mice were sacrificed 6 months after diet change. Kidneys, lymph nodes, spleen, blood and guts were collected for evaluation.

Results: KD and HFGD were both well tolerated by experimental mice. Two months after diet change, higher level of beta-hydroxybutyrate and triglyceride but lower sugar level was noted in mice fed on KD when compared to those fed on CD and HFGD (all p<0.05). Mice fed on KD and HFGD have a much lower CBC and platelet count than those fed on CD in the experimental mice group (both p<0.05). Although global lymphocyte counts were much lower in those pristine treated mice, Th17 lymphocytes were significantly higher in the blood as well as kidneys among those fed on HFGD (all p<0.05). This is compatible with their high serum concentration of anti-dsDNA, anti-nRNP and anti-Sm and the rapid progressing proteinuria. Renal, hepatic and intestinal histopathology was still under analysis at present.

Conclusion: In conclusion, food plays a critical role in immune modification. Despite the reported anti-inflammatory effect of KD, it does not mitigate lupus nephritis progression. HFGD formula, however, accelerated the autoimmune phenotype for cases with lupus like glomerulonephritis.

REFERENCES:

Disclosure of Interests: None declared