CXCL17 IN RHEUMATOID ARTHRITIS: INTERFERONE-ANTI-INFLAMMATORY EFFECTS OF SPLEEN TYROSINE KINASE

Anna Kender1, Johanna Mucke2, Long Tang-Chieu2, Torsten Lowin1, Tim Claßen1, Oliver Sander1, Ellen Bleck1, Claudia Heier1, Georg Pongratz1, Matthias Schneider1, Stefan Vordenbaum1.

Background: CXCL17 is the latest chemokine discovered and was reported to act as a novel angiogenic and anti-inflammatory factor. Am J Med 1950. 2006;176(4):2069–2074.

Methods: Synovial tissue from joint replacements of RA and osteoarthritis (OA) patients was used for CXCL17 and GPR35 immunohistochemistry and in-situ hybridization/immunofluorescence double-stainings. CXCL17 concentration in the synovial fluid of RA and CXCL17 production by synovial fibroblasts and smooth muscle cells after stimulation with TNF-α, INF-γ and IL-1β was quantified by qPCR and ELISA. Angiogenesis was assessed by a human umbilical vein endothelial cell assay.

Results: CXCL17 and GPR35 are widely expressed in the synovial membrane of RA compared to OA (p=0.006). Within the synovial membrane CXCL17-mRNA could be located to vascular smooth muscle cells. INF-γ significantly induced CXCL17-mRNA and protein production in RA synovial fibroblasts (1.88-fold, p=0.019 and 2.02-fold, p=0.002 respectively) and rat smooth muscle cells (67-fold, p=0.02 and 3.7-fold, p=0.001). CXCL17 was detected in the synovial fluid of RA (mean 310 pg/ml). In vitro angiogenesis was inhibited by CXCL17. This effect was reversed by specific GPR35 antagonists.

Conclusion: CXCL17 is abundant in RA synovial tissue, localizes to vascular smooth muscle cells and fibroblasts, and is inducible by INF-γ. Angiogenic properties are mediated by GPR35. CXCL17 and GPR35 may constitute a hitherto unrecognized regulatory protein in RA pathogenesis and therefore be interesting drug targets.

REFERENCES

Disclosure of Interests: None declared.

AB0125

ANTI-INFLAMMATORY EFFECTS OF SPLEEN TYROSYNE KINASE (SYK) INHIBITOR, PICEATANNOL, ON FIBROBLAST-LIKE SYNOVIOCYTE IN RHEUMATOID ARTHRITIS

Seon Uk Kim1, Hyun Jung Yoo1,2, Shin Eui Kang1, Ji Soo Park1, Ra Ham Kim1, Jin Kyun Park1, Eun Young Lee1, Yeong Wook Song1,2,3. Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergent Science and Technology, and College of Medicine, Seoul, Korea, Rep. of (South Korea); 2Seoul National University Hospital, Division of Rheumatology, Department of Internal Medicine, Seoul, Korea, Rep. of (South Korea)

Background: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation with subsequent cartilage and bone erosion leading to joint destruction. The fibroblast-like synoviocytes (FLS) have a central role in disease pathogenesis and in vitro FLS inflammation correlates with arthritic damage in RA patients. Spleen tyrosine kinase (SYK) is an intracellular protein tyrosine kinase in the cells of joint tissues such as bone, cartilage, and synovium, where it is involved in tumor necrosis factor α (TNF-α) receptor signaling. Piceatannol, a naturally occurring hydroxylated analog of resveratrol, was reported to inhibit SYK.

Objectives: The aim of this study is to evaluate the effects of piceatannol on inflammation and the downstream signaling pathway of SYK in RA FLS.

Methods: FLS isolated from synovium of rheumatoid arthritis (RA) patients were cultured with DMEM supplemented with 10% FBS and 1% penicillin/streptomycin. FLS were stimulated with lipopolysaccharide (LPS) for 24 h after 1 h treatment of piceatannol. The cytokines were screened using human inflammatory and matrix metalloproteinase (MMP) antibody array kit (Abcam) in the culture supernatant. Also, IL-6, IL-8 and CXCL10 levels were measured by ELISA and the expression levels of cytokine-angiogenesis-2 (COX-2) and inducible nitric oxide synthases (iNOS) were determined by western blotting.

Results: Protein expression level of SYK was suppressed by piceatannol (50 μm treatment). Piceatannol inhibited the production of cytokines/chemokines such as IL-6, CCL-5, CCL-8 and MMP-1 in RA FLS stimulated with LPS. The levels of IL-6, IL-8 and CXCL10 in RA FLS were dose-dependently decreased. The viability and proliferation of the cells were not affected. Piceatannol significantly suppressed COX-2 and iNOS protein expressions.

Conclusion: Piceatannol had suppressive effects on pro-inflammatory cytokines/chemokines production and had anti-inflammatory effects in RA FLS.

REFERENCES

Disclosure of Interests: None declared.

AB0127

VERY STRONGLY POSITIVE RHEUMATOID FACTOR LEVELS (10-FOLD HIGHER THAN THE UPPER NORMAL RANGE) RATHER THAN “RHEUMATOID FACTOR POSITIVITY” PER SE ARE ASSOCIATED WITH SMOKING IN FEMALE RA PATIENTS WITHOUT A HISTORY OF OCCUPATIONAL DUST AND FUME EXPOSURE

Daisy Kirley, David Hutchinson. Royal Cornwall Hospital, Truro, United Kingdom

Background: Rheumatoid factor (RF) forms part of the 2010 EULAR/ACR classification criteria. A weakly positive RF is defined as up to 3-fold higher and a strongly positive RF >3-fold higher than the upper normal range. However, a longitudinal study of individuals with RF levels at least 4-fold higher than the upper range of normal had an adjusted hazard ratio for RA development of 26 (95% CI 15 to 46) compared to only 6.0 (3.4 to 10) for individuals with levels 2 to 4-fold above the upper normal range.

We have recently reported median RFs of greater than 10-fold higher than the upper normal range in nodular RA which is far more prevalent in smokers than non-nodular RA. We have arbitrarily defined this level of RF as very strongly positive as it defines a disease subtype.

Additionally, RF levels are strongly associated with additive exposures to both smoking and industrial vapours, gases, dust and fumes (VGDF) in male RA, with only 8% having been exposed to neither VGDF nor cigarette smoke.

Objectives: Accordingly, we have studied female RA in whom VGDF exposures are less common to compare RF levels in an appreciable number of smokers and non-smokers without the significant confounding effect of VGDF exposures to determine if smoking is specifically associated with a very strongly positive RF.

Methods: Medical record analysis yielded 241 female RA patients seen in clinic between January and June 2018 without exposures to industrial VGDF. These patients were stratified for a history of smoking. RF was measured with Tina-quant manufacturer guidelines, a RF weakly positive (14-42 IU/ml), RF strongly positive (42-1140 IU/ml) and RF very strongly positive (>140 IU/ml).

Results: There were 109 never smokers and 132 smokers with a median RF of 21 IU/ml and 53 IU/ml respectively, p<0.05. In never-smokers significantly more were seronegative 46/109 (42%) vs. 32/132 smokers (24%), odds ratio (OR)=2.22 (95% confidence interval (CI):2.0-2.3, p<0.004). Of never smokers 22/109 (20%) were weakly RF positive and very similar to smokers 28/132 (21%).29/109 (27%) of never smokers were RF strongly positive and a similar proportion of smokers 37/132 (28%) were strongly RF positive. Finally in never smokers, only 12/109 (11%) very strongly RF positive compared to 35/132 (27%) of smokers, OR=2.89 (95% CI 1.41-5.89, p=0.004).

Conclusion: Considering female RA smokers and non-smokers, the difference in RF positivity was exclusively accounted for by an increased prevalence of a very strongly positive RF in female smokers. This suggests that smoking has an impact on very strongly positive RF levels rather than RF positivity per se without the important confounding factor of VGDF exposure.