COCULTURE OF SYNOVIAL MEMBRANE AND CARTILAGE: A POTENTIAL HUMAN EX VIVO CARTILAGE DEGRADATION MODEL

Johanna Mucke1, Victoria Warzynski2, Ellen Bleck2, Thomas Pauly2, Tim Claßen2, Matthias Schneider2, Stefan Vordenbaumen2, Policlinico for Rheumatology & Húmero Research Centre for Rheumatology, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany; 2Dept. of Orthopedic Surgery, St. Elisabeth-Hospital, Rheinisch Rheumazentrum, Meerbush-Lank, Germany

Background: Cartilage degradation is a hallmark in both osteoarthritis (OA) and rheumatoid arthritis (RA). Ex vivo cartilage models offer the potential to study disease processes but are surprisingly rarely used.

Objectives: Here we investigate the effect of synovial tissue and stimulation with TNF-α on cartilage degradation in a physiologically relevant coculture-model of synovial membrane and cartilage.

Methods: Cartilage and synovial membrane were collected from patients with RA and OA who underwent joint replacement. Cartilage was cultured either alone or with synovial membrane in medium with or without TNF-α as a stimulant for up to 28 days. The explants were harvested at different time points and Safranin-O staining was performed to visualize proteoglycan (PG) content. A scoring system from 0 (no PG content) to 3 (high PG content) was applied as a semi-quantitative measure for evaluation. Linear mixed modeling adjusted for gender and age was performed to identify factors influencing PG content.

Results: Samples of 18 patients (9 OA, 9 RA) were collected. Factors associated with proteoglycan loss in cartilage were the time in culture (p<0.02), stimulation with TNF-α (p=0.0007) and coculture with synovial membrane (p=0.00002) in univariate analysis with TNF-α (p=0.0009) and coculture (p=0.001) maintaining the level of significance in multivariate analysis. (Figure 1)

Conclusion: Exposure to synovial tissue and TNF stimulation drive cartilage proteoglycan loss in an ex vivo cartilage degradation model. This model may prospectively serve to investigate pathophysiological pathways of cartilage degradation in both OA and RA.

REFERENCES

None

Figure 1. Proteoglycan content at d38. PG, proteoglycan.

Disclosure of Interests: Johanna Mucke: None declared. Victoria Warzynski: None declared. Ellen Bleck: None declared. Thomas Pauly: None declared. Tim Claßen: None declared. Matthias Schneider Grant/research support from: GalaxoSmithKline and UCB Pharma for performing the LULa-study., Speakers bureau: Chugai, Stefan Vordenbäumen: None declared


AB0100

COMPARATIVE ANALYSIS OF THE EFFECTIVENESS AND TOLERANCE OF INTRA-ARTICULAR INJECTION OF PLATELET RICH PLASMA VS HYALURONIC ACID AND NON-ARTHROCOPIC JOINT LAVAGE IN PATIENTS WITH KNEE OSTEOARTHRITIS

Rafaela Ortega Castro1, Rocio Segura1, Jerusalem Calvo Gutierrez1, Rocio Espino-Garcia1, Maria del Carmen Castro Villagras1, Alejandro Escudero Contreras1, Miguel A. Caracuel-Ruiz1, Lepheesa Pineda Lourdes1, Desiree Ruiz-Vilchez2, Montserrat Romero-Gomez1, Pilar Carreto-Font3, Eduardo Collantes Estevez1, Font Ugarte Pilar1, 1Reina Sofia University Hospital/ Maimonides Institute of Biomedical Research of Córdoba (IMIBIC); Clinical Management Unit of Rheumatology, Córdoba, Spain, 2University of Cordoba/Reina Sofia Hospital, Córdoba, Spain; 3Fudala Duero Clinic East Area, Valladolid, Spain

Background: Knee Osteoarthritis (KO) is a common condition associated with pain and morbidity. The impact of this pathology makes it necessary to develop new procedures for joint regeneration. Regenerative treatments such as platelet-rich plasma (PRP) are being proposed as a safe alternative, capable of regenerating damaged tissues and improving the quality of life, reducing the need to surgical procedures (1-4).

Objectives: To compare the effectiveness of PRP treatment vs Hialuronic Acid (HA) and Non-Arthroscopic Joint Lavage (NAJL) in patients with KOA.

Methods: It was performed a prospective, 3-months observational study of 51 patients with KOA, from the OA clinic of the Reina Sofia Hospital of Córdoba. Patients were treated according to clinical practice in 1 of the 3 treatment arms (PRP, HA, NAJL). Pain and disability were evaluated using Visual Analogue Scale (VAS) of joint pain, WOMAC and OARSI. We compared the baseline data using simple ANOVA and chi-squared tests and the intra- and inter-group differences before and after treatment (0, 1 and 3 months) using the mixed ANOVA test. All comparisons were bilateral considering p≤0.05 as a significant result.

Results: 51 patients were enrolled, of which 52.9% were female. The average age (±SD) was 58.47 ± 7.48 years. The average Body Mass Index (BMI) was 30.64 ± 4.25 Kg/m². Characteristics at baseline were comparable among the 3 treatment groups (Table 1). An overall improvement was observed during the follow-up in the PRP group in terms of pain and disability with respect to the baseline, with a VAS MD of -3.00 [95% CI, -4.79 to -1.21] in the first month and -3.08 [95%, -4.79 to -1.38] at 3 months (p<0.001), a MD WOMAC of -18.83 [95% CI, -30.62 to -7.05] (p = 0.001) in the first month, and a MD of OARSI of -19.32 [95% CI, -34.26 to -4.37] (p = 0.008) in the first month and -18.94 [95% CI, -36.81 to -0.7] at 3 months (p <0.05). In addition, the PRP group was superior to the HA group, showing a significant improvement in the VAS at 1 and 3 months (p ≤0.005) and compared to the NAJL group, PRP showed better results in the WOMAC throughout the follow-up (p<0.01) and in the OARSI at 3 months (p = 0.013).

Conclusion: Based on our results, the intra-articular infiltration with PRP could therefore constitute a safe and effective treatment option in KOA patients, with short-medium term results superior in terms of pain and disability to conventional treatment with HA and NAJL.