BIOMARKER CHANGES FOR PATIENTS WITH Rheumatoid Arthritis RECEIVING TOFACITINIB WITH METHOTREXATE OR GLUCOCORTICOIDS VS TOFACITINIB MONOTHERAPY

Julie Lee1, Xing Chen1, Weidong Zhang1, David Martin2, Craig Hyde2, Tomohiro Hirose2, Shweta Shah3, Lori Fitz1, Pfizer Inc, Cambridge, MA, United States of America; 4Pfizer Japan Inc, Tokyo, Japan; 3Pfizer Inc, Collegeville, PA, United States of America

Background: Tofacitinib is an oral Janus kinase inhibitor for the treatment of RA. Herpes zoster is more common in patients (pts) with RA vs the general population.1 This risk increases with tofacitinib use2 and appears to be further increased with concomitant use of csDMARDs such as methotrexate (MTX), or glucocorticoids (GC).3 The mechanism for these increases in risk may be linked to treatment-induced interferon (IFN) suppression,3 given that replication of the varicella zoster virus appears to be limited by IFN activity.4

Objectives: To evaluate whether treatment of RA with tofacitinib + MTX or GC suppresses IFN pathway proteins to a greater extent than treatment with tofacitinib monotherapy.

Methods: This was a post hoc analysis of pooled data from 1 Phase (P)2 (Japan study [NCT00687193]) and 2 P3 (ORAL Scan [NCT00847613]; ORAL Start [NCT01039688]) tofacitinib studies. Serum samples were collected at baseline (BL), (Week (W)12 and/or W24 from pts with RA treated with tofacitinib 5 or 10 mg ID, given as monotherapy (Japan study; ORAL Start) or with stable doses of MTX (15–25 mg weekly for ≥6 weeks; ORAL Scan) and/or GC (≤10 mg/day prednisone or equivalent; all studies). A total of 376 proteins associated with cellular and inflammatory processes, including 6 IFN pathway proteins (CXCL10, CXCL9, CXCL11, IL-12, IFNγ and IL-20), were measured using a homogeneous solution-based assay (Olink Proseek® Multiplex Assay, Uppsala, Sweden). Changes in protein levels from BL to W12 (Japan study, ORAL Scan) and/or W24 (ORAL Scan, ORAL Start) were compared for tofacitinib monotherapy vs tofacitinib + MTX or GC using linear regression models. The dependent variable was change from BL in protein levels at W12 or W24. The independent variable was MTX or GC status. Age, gender, GC status (in MTX model) and BL protein levels and tofacitinib dose were covariates. Regressions were performed separately for each study; results for GC were combined via meta-analysis using fixed and random effect models. Significance was considered at p<0.1 after controlling for false discovery rate (FDR). Data quality control included accounting for plate/batch defects and limits of detection, and removal of sample/analytes with excessive missing data.

Results: In total, 659 serum samples were collected from 321 pts. Of the 6 IFN pathway proteins, 2 (IFNγ and IL-20) were below the limit of detection. There was no strong evidence suggesting statistical differences between tofacitinib monotherapy and tofacitinib + MTX or GC in changes in levels of the 4 detectable IFN pathway proteins (CXCL10, CXCL9, CXCL11 and IL-12) from BL to W12 and/or W24. Significant differences were observed for 2 of the 370 other proteins: MMP-1 (FDR adjusted p=0.08) and IL1Ra (FDR adjusted p=0.09), where levels decreased from BL to W12 for tofacitinib + MTX to a greater extent than for tofacitinib monotherapy.

Conclusion: The results of this post hoc analysis suggest that tofacitinib + MTX or GC may not suppress circulating serum levels of IFN pathway proteins to a greater extent than tofacitinib monotherapy. Although there were differences at W12 for tofacitinib + MTX vs tofacitinib monotherapy in MMP-1 and IL1Ra, it is not yet clear whether these observations may be attributable to differences in the ethnicities of the study populations receiving these two treatment regimens (global vs Japan). Further analyses of biomarker changes with tofacitinib are ongoing.

References:

Disclosure of Interests: Julie Lee Shareholder of: Pfizer Inc; Employee of: Pfizer Inc; Xing Chen Shareholder of: Pfizer Inc; Employee of: Pfizer Inc; Weidong Zhang Shareholder of: Pfizer Inc; Employee of: Pfizer Inc; David Martin Shareholder of: Pfizer Inc; Employee of: Pfizer Inc; Lori Fitz Shareholder of: Pfizer Inc; Employee of: Pfizer Inc

Acknowledgement: Study sponsored by Pfizer Inc. Medical writing support was provided by Sarah Piggott of CMC Connect and funded by Pfizer Inc.
INTERRELATIONSHIP BETWEEN NICOTINIC ACETYLCHOLINE RECEPTOR AND CYTOKINE PRODUCTION NOTED FOLLOWING T-CELL ANTIGEN RECOGNITION AND ACTIVATION

Nicholas Mangioni1,2,3, Kevin Hou1, Han-Shen Tae3, David Adams4, 1University Sydney/Westmead Hospital, Rheumatology, Sydney, Australia; 2The University of Sydney, Rheumatology, Camperdown, Australia; 3Westmead, Rheumatology, Westmead, Australia; 4Westmead, Rheumatology, Westmead, Sydney, Australia; 5University of Wollongong, Wollongong, Australia; 6University of Wollongong, Illawarra Health and Medical Research Institute, Wollongong, Australia.

Background: T cells express muscarinic and nicotinic acetylcholine receptors (nAChRs, nAChRs) that increase intracellular Ca2+ [1] on stimulation. The expression of these receptors on macrophages and their activation by vagal stimulation has recently been the focus for novel arthritis treatment [2].

Objectives: Our aim in the present study was to assess the effect of various peptides, on cytokine production and nAChRs inhibition.

Methods: nAChR heterologous subunits were expressed in Xenopus oocytes and the inhibitory activity of various peptides at ACh-evoked currents were assessed using an antigen presentation assay (APA). Briefly, the B24.11 murine T cell hybridoma recognizing cytochrome c as the antigen was co-cultured with the antigen presenting B cell hybridoma line LK35.2 (I-Ek bearing) and pigeon cytochrome c in the absence or presence of peptides or several nAChRs antagonists, including mecamylamine (broad nAChR antagonist), warglerin-1 (α1β1εα2ε), o-bungarotoxin (α7), RG1 (9010), Vc1.1 (9010) and dihydro-β-erythroidine hydrobromide (α3β4 and α3β2). ELISA and real-time PCR were performed to measure cytokine protein levels and nAChRs T cells mRNA express levels separately.

Results: At 10μM, peptide W32052 had modest 50-55 % inhibition of human (h) α3β2 and human (h) nAChR subtypes, and 35% inhibition at hο3β10. W32052 greatly inhibited chimeric rat α1β1α mouse ε (85%) at 10μM. W32052 also inhibited IL-2, IL-6, TNF-α and GM-CSF production at 50μM in the APA. nAChRs antagonists, mecamylamine (100μM), RG1 (10μM), Vc1.1 (17.5μM) and dihydro-β-erythroidine hydrobromide (10μM) could decrease IL-2 production. However, warglerin-1 and o-bungarotoxin did not affect IL-2 production in the APA.

Conclusion: W32052, an antagonist of nAChR, inhibits cytokine production following antigen recognition suggesting that there is a close link between T-cell antigen activation, ion channel regulation mediated by AChR and cytokine production. Further experiments are in progress.

REFERENCES

Disclosure of Interests: None declared


AB0074

CAN DIFFERENT INTERLEUKIN LEVELS PREDICT RESPONSE TO BIOLOGICAL TREATMENT IN PATIENTS WITH RHEUMATOID ARTHRITIS?

Stephen McDonald1,2, Rachel Reed1,4, Ivona Baricevic-Jones4, Stephanie Ling1,5, Darren Plant1, Anne Barton3, University of Manchester, NIHR Manchester BRC, Manchester, United Kingdom; 2Manchester University Foundation Trust, The Kellgren Centre, Manchester, United Kingdom; 3University of Manchester, Manchester Molecular Pathology Innovation Centre, Manchester, United Kingdom; 4University of Manchester, Stoller Biomarker Discovery Centre, Manchester, United Kingdom; 5University of Manchester, Division of Musculoskeletal and Dermatological Sciences Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester, United Kingdom.

Background: The cytokine family interleukin IL-17 has an important pro-inflammatory role, stimulating tumour necrosis factor (TNF), interleukin IL-1 and IL-6 production. It is subclassified into IL-17A, IL-17F and IL-17AF. The interleukin IL-10 acts by blocking the secretion of pro-inflammatory cytokines. In the present study, we investigated whether patients whose disease activity is not adequately controlled by TNF therapies in Rheumatoid Arthritis (RA) may have IL-17 driven disease and that lower IL-10 levels may play a permissive role.

Objectives: To determine if pre-treatment or 3 month IL-17IL-10 concentrations correlate with treatment response to anti-TNF drugs by 6 months of treatment.

Methods: Data was collected from the Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate (BRAGGSS). Patients were followed up at pre-treatment (baseline), 3 months, 6 months and 12 months with bloods, questionnaires and clinical data obtained. Patients were eligible for inclusion if commencing on adalimumab or etanercept and were designated good or poor EULAR responder status at 6-months, Willcoxon rank sum compared interleukin levels at pre-treatment and 3 months- according to EULAR classification by 6 months. Logistic regression was carried out adjusting for gender, baseline DMDAR use and disease activity scores (DAS-28).

Disclosure of Interests: None declared


AB0076

EFFECT OF SIDAGURI EXTRACT (SIDA RHOMBIFOLIA L) ON URINARY CARBOXY-TERMINAL TELEPEPTIDES OF TYPE II COLLAGEN IN OSTEARTHRITIS PATIENTS.

Blondina Marpunda1, Sheena Dalmunthe2, Joshua Patrick3, William Simanjuntak2, 1Universitas Sumatera Utara, Division of Rheumatology, Internal Medicine, Medan, Indonesia; 2Universitas Sumatera Utara, Division of Rheumatology, Internal Medicine, Medan, Indonesia.

Background: Osteoarthritis is one of the most common joint diseases in Indonesia and elsewhere. Assessment of the effectiveness of osteoarthritis therapy with biomarkers should be developed. One of the biomarker that can be used to assess the activity of osteoarthritis is Urinary Carboxy-Terminal Telepeptides of Type II Collagen: Indonesia is the center of world biodiversity, and Sidaguri is one of the traditional plants that is believed to have many benefits including its anti-inflammatory effect and the ability to decrease level of uric acid. The β-sitosterol is an active component in Sidaguri that has anti-inflammatory activity in osteoarthritis.

Objectives: To compare the effect of sidaguri and meloxicam therapy with meloxicam alone in decreasing the levels of urinary Carboxy-Terminal Telepeptides Of Type II Collagen in osteoarthritis patients.

Methods: This study was conducted on 24 patients with osteoarthritis at H. Adam Malik General Hospital Medan from April to June 2018. Subjects were divided into 2 groups, namely placebo and Sidaguri group. Levels of uCTX II were assessed before and after intervention. T- test was used to analyze the data using SPSS version 22.

Results: 83.3% of osteoarthritis patients in H. Adam Malik hospital who participated in this study were women with mean age 60.8± 9.74 years in the placebo group and 63.0± 6.14 years in the sidaguri group. The results showed that subjects receiving Sidaguri showed significant decrease in uCTX II before and after intervention (521.42 ± 369.99 vs. 330.75 ± 163.49 ng/mmol, p = 0.033). Meanwhile, in the placebo group also found decreased levels of uCTX II but it was not statistically significant (286.17 ± 163.82 vs. 218.25 ± 75.05 ng/mmol, p = 0.238). In addition, there was a significant difference between the mean of the two groups after the intervention (p = 0.046).

Conclusion: There was a significant decrease in uCTX II levels in osteoarthritis patients who received Sidaguri extract for 30 days compared to the placebo group.

REFERENCES

Disclosure of Interests: None declared


AB0075

L ON URINARY CARBOXY-TERMINAL TELEPEPTIDES OF TYPE II COLLAGEN IN OSTEARTHRITIS PATIENTS.

Blondina Marpunda1, Sheena Dalmunthe2, Joshua Patrick3, William Simanjuntak2

1Universitas Sumatera Utara, Division of Rheumatology, Internal Medicine, Medan, Indonesia; 2Universitas Sumatera Utara, Division of Rheumatology, Internal Medicine, Medan, Indonesia.

Background: Osteoarthritis is one of the most common joint diseases in Indonesia and elsewhere. Assessment of the effectiveness of osteoarthritis therapy with

Disclosure of Interests: None declared