Conclusion: In addition to inducing p75NTR up-regulation, inflammatory stimuli increase the release of proNGF in arthritis SFs. Autocrine proNGF binds to p75NTR and further enhances pro-inflammatory cytokine production, creating a vicious circle that amplifies the inflammatory response. Blocking the binding of endogenous proNGF to its receptor p75NTR strongly reduces the production of inflammatory mediators and prospects the use of proNGF inhibitors as a new therapeutic approach to chronic arthritis.

REFERENCES

Disclosure of Interests: Luciapa Farina: None declared, Gaetana Minnone : None declared, Marzia Soligo : None declared, Luigi Manni : None declared, Gian Marco Moneta: None declared, Ivan Caiello: None declared, Luigi Manzo : None declared, Fabrizio De Benedetti Grant/research support from: AbbVie, SOBI, Novo-

AB0063 A SYSTEMS APPROACH TO INVESTIGATE INFLAMMATION RESOLUTION BY MULTICOMPONENT MEDICINAL PRODUCT TR14
Patrick Schopohl1, Suchi Smitta1, Faiz Khan2, Tom Gebhardt3, Matti Hoch2, Marco Moneta: None declared, Ivan Caiello: None declared, Luigi Manzo : None declared, Fabrizio De Benedetti Grant/research support from: AbbVie, SOBI, Novo-

AB0064 SERUM TENASCIN-C LEVELS ARE ELEVATED IN PATIENTS WITH AXIAL SPONDYLOARTHRITIS
Hana Hulejova1, Kristyna Bubova2, Klara Prazijrov2, Marketa Husakova2, Maria Filkova2, Michal Tomlik2, Karel Paveka2, Ladislav Senott2, 1Institute of Rheumatology, Prague, Czech Republic; 2Institute of Rheumatology, Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic

Background: Tenascin-C (TNC) is a pro-inflammatory extracellular matrix glyco-
protein that is synthesized in various pathological conditions. TNC induces inflam-

Methods: We constructed a comprehensive MIM using damage-, and pathogen-
associated molecular patterns (DAMPs and PAMPs) and established disease genes from selected acute inflammatory clinical phenotypes as seed molecules. From the MIM, we identified feedback mechanisms play a central role, require multi-
target interventions [1]. Dynamics of feedback mechanisms associated with multi-
ple therapeutic checkpoints require systems biology approaches.

Objectives: The objective of our study was to construct a comprehensive molecu-
lar interaction map (MIM) of acute inflammation and its resolution. We further
aimed to understand the effect of Traumeel (TR14), a multicomponent drug, on inflam-
mation resolution, by mapping previously published TR14 transcriptomics data [2] from a wound healing murine model onto the MIM.

Methods: We constructed a comprehensive MIM using damage-, and pathogen-
associated molecular patterns (DAMPs and PAMPs) and established disease genes from selected acute inflammatory clinical phenotypes as seed molecules. From the MIM, we identified feedback mechanisms play a central role, require multi-
target interventions [1]. Dynamics of feedback mechanisms associated with multi-
ple therapeutic checkpoints require systems biology approaches.

Objectives: The objective of our study was to construct a comprehensive molecu-
lar interaction map (MIM) of acute inflammation and its resolution. We further
aimed to understand the effect of Traumeel (TR14), a multicomponent drug, on inflam-
mation resolution, by mapping previously published TR14 transcriptomics data [2] from a wound healing murine model onto the MIM.

Results: The MIM has, as of January 2019, 3300 interactions, which are divided into 24 functional modules based on acute inflammation-related gene ontology terms. From the MIM, we identified 435 FBLs which were merged to extract a core regulatory network. After mapping of TR14 gene expression fold change data at each time point using the Cytoscape ClueGo app.

Conclusion: We demonstrated here elevated serum TNC levels in patients with
axSpA, particularly in those with syndromes, which may suggest its role in bone formation during radiographic stage of the disease.

Acknowledgement: This work was supported by MH CR 032728, SVV 263737.
AZV - 17-33127A

Disclosure of Interests: Hana Hulejova: None declared, Kristyna Bubova: None declared, Klara Prazijrov: None declared, Marketa Husakova: None declared, Maria Filkova: None declared, Michal Tomlik: None declared, Karel Paveka: None declared, Ladislav Senott Grant/research support from: AbbVie, Consultant for: AbbVie, Bristol-Myers Squibb, Celgene Corporation, Merck Sharp and Dohme, Novartis, Pfizer, Roche, UCB, Amgen, Takeda, Speakers bureau: AbbVie, Amgen, Bristol-Myers Squibb, Celgene Corporation, Eli Lilly, Merck Sharp and Dohme, Novartis, Pfizer, Roche, UCB