Background: Radiofrequency Echographic Multi Spectrometry (REMS) is an innovative echographic technology able to provide the most important densitometric parameters by a fully automatic approach. Its high accuracy with respect to the conventional Dual X-ray absorptiometry (DXA) has been shown in a very recently published multicenter clinical trial [1].

Objectives: To evaluate the performance of the REMS technology in osteoporosis diagnosis, with respect to DXA (Clinical Gold Standard), when applied on femoral neck.

Methods: DXA and REMS acquisitions were performed on the femoral neck in 324 female patients, aged between 51 and 70 year, recruited at the Department of Internal Medicine of the Hospital del Mar (Barcelona, Spain). REMS technology is based on a automatic integrated processing of the native unfiltered “raw” (RF) signals, which can be employed to assess the bone health status through comparisons with reference spectral models previously derived from osteoporotic and healthy patients. The data shown have been obtained in the strictest adherence to manufacturer’s procedures and indications. REMS accuracy was assessed by investigating its discriminating ability between osteoporotic and non-osteoporotic patients and by evaluating the correlation between REMS and DXA measurements.

Results: The REMS approach is effectively able to discriminate between osteoporotic and non-osteoporotic patients with a sensitivity equal to 93% and a specificity equal to 95%. These data are further emphasized by the obtained Pearson Correlation value (r = 0.90; p<0.001). REMS accuracy was confirmed also by Cohen’s kappa coefficient (k) equal to 0.76. Finally, a very low average difference (expressed as bias ± 2 SD) between REMS and DXA measured BMD (-0.006 ± 0.078 g/cm2) was shown.

Conclusion: In conclusion, REMS technology has proven to be an accurate non-ionizing approach to detect osteoporosis disease at the femoral neck. The performance of this radiation-free technique opens new perspectives for early diagnosis and screening of osteoporosis in clinical and epidemiological studies.

REFERENCE

Disclosure of Interests: Diana Ovejero Crespo: None declared, Xavier Nogues Speakers bureau: Lilly and Eli Lilly, Adolfo Diez-Perez Speakers bureau: Amgen and Eli Lilly, Adolfo Diez-Perez

SAT0712-HPR VALIDATION OF THE TEST FOR SUBSTITUTION PATTERNS – IN INDIVIDUALS WITH SYMPTOMATIC KNEE OSTEOARTHRITIS

Margareta Tömblör1,2, Maria Andersson3,2, Anna Trulsson4,5, Emma Haaglund6,7
1Helsingborg Hospital, Department of Occupational Therapy and Physiotherapy, Helsingborg, Sweden; 2RandD Spenshult, Halmstad, Sweden; 3Lund University, Department of Clinical Sciences, Department of Rheumatology, Lund, Sweden; 4Skåne University Hospital, Department of Pain Rehabilitation, Lund, Sweden; 5Lund University, Department of Health Sciences, Physiotherapy, Lund, Sweden; 6Halmstad University, School of Business, Engineering and Science, Halmstad, Sweden

Background: Few tools evaluates quality of movements in individuals with knee osteoarthritis (OA). The Test for Substitution Patterns (TSP) is developed to measure the difficulty to perform five functional movements regarding postural control and altered movement patterns (1). TSP is validated and reliable in individuals with anterior cruciate ligament injury, but has not yet been evaluated in individuals with knee OA.

Objectives: To study the relationships between the OA modified TSP (OA-TSP) and self-reported knee function as measured with the Knee Injury and osteoarthritis Outcome Score (KOOS) and the 30-s chair stand test (30-s CST) in individuals with symptomatic knee OA. A second aim was to study the discriminative ability of the OA-TSP for unilateral knee pain.

Methods: Sixty-two individuals with symptomatic knee osteoarthritis were included using consecutive sampling. Health status was assessed with the EuroQol five dimension scale (EQ5D, 0-1 worst-best), and knee function in five subscales for KOOS (pain, symptoms, ADL, quality of life and sport/recreation, 0-100 worst-best). The 30-s CST-test measured the number of rises in 30 seconds. In the OA-TSP, substitution patterns are observed and scored from 0-3 (no substitution pattern/poorly performed) during five standardized functional movements. The maximum score is 54 points scored with score of 10 points. Median and non-parametric tests were used for all descriptive data. Spearman’s correlation and Wilcoxon signed rank test were used for analyses. A correlation coefficient rs ≥0.50 is considered large, ±0.30 to < 0.50 moderate and ±0.10 < 0.30 small.

Results: The median age was 54 years (30-61), 76% were women. The median Body Mass Index was 25 (18-48) and EQ5D 0.8 (0.29-1.00). There were no significant differences between the gender regarding SM and EQ5D. Median OA-TSP total score was 29 (10-70). Median KOOS pain was 75 (36-100), symptoms 71 (21-96), ADL 87 (30-100), and EQ5D 0.8 (0.29-1.00). The median age was 54 years (30-61), 76% were women. The median Body Mass Index was 25 (18-48) and EQ5D 0.8 (0.29-1.00). There were no significant differences between the gender regarding SM and EQ5D. Median OA-TSP total score was 29 (10-70). Median KOOS pain was 75 (36-100), symptoms 71 (21-96), ADL 87 (30-100), and EQ5D 0.8 (0.29-1.00)