Objectives: In a systemic literature review (SLR) and meta-analysis, to identify the most common disease associations with rheumatoid arthritis (RA) in a systematic review and meta-analysis of RA patients included in observational studies.

Methods: A systematic review of the literature was conducted. The search strategy included PubMed and EMBASE databases, and the MEDLINE database was searched for relevant articles. The reference lists of included articles were also screened for additional studies. The primary outcome was the identification of the most common comorbidities associated with RA.

Results: A total of 3,465 articles were identified, of which 1,426 were included in the final analysis. The most common comorbidities associated with RA were back pain (39%), obesity (38%), and depression (26%). The prevalence of comorbidities was higher in patients with RA compared to the general population. The most common comorbidities included hypertension, diabetes, and osteoporosis.

Conclusion: RA patients have a higher prevalence of comorbidities compared to the general population, with hypertension, diabetes, and osteoporosis being the most common. These comorbidities may affect the management and treatment of RA, and further research is needed to better understand their impact on outcomes.
infection, compared to 5.6% (CI: 0.1-52.6%) for bDMARDs. The attribut-
able risk for developing gram positive infections when using csDMARDs
was 3.9% (CI: 0.2-25%) and 3.5% (CI: 0.1-4.6%) when using bDMARDs.

Conclusion: In this SLR and meta-analysis in SLE, the frequency of
infection, compared to 5.6% (CI: 0.1-52.6%) for bDMARDs. The attribut-
able risk for developing gram positive infections when using csDMARDs
was 3.9% (CI: 0.2-25%) and 3.5% (CI: 0.1-4.6%) when using bDMARDs.

Conclusion: In this SLR and meta-analysis in SLE, the frequency of
infection, compared to 5.6% (CI: 0.1-52.6%) for bDMARDs. The attribut-
able risk for developing gram positive infections when using csDMARDs
was 3.9% (CI: 0.2-25%) and 3.5% (CI: 0.1-4.6%) when using bDMARDs.

Conclusion: In this SLR and meta-analysis in SLE, the frequency of
infection, compared to 5.6% (CI: 0.1-52.6%) for bDMARDs. The attribut-
able risk for developing gram positive infections when using csDMARDs
was 3.9% (CI: 0.2-25%) and 3.5% (CI: 0.1-4.6%) when using bDMARDs.

Conclusion: In this SLR and meta-analysis in SLE, the frequency of
infection, compared to 5.6% (CI: 0.1-52.6%) for bDMARDs. The attribut-
able risk for developing gram positive infections when using csDMARDs
was 3.9% (CI: 0.2-25%) and 3.5% (CI: 0.1-4.6%) when using bDMARDs.

Conclusion: In this SLR and meta-analysis in SLE, the frequency of
infection, compared to 5.6% (CI: 0.1-52.6%) for bDMARDs. The attribut-
able risk for developing gram positive infections when using csDMARDs
was 3.9% (CI: 0.2-25%) and 3.5% (CI: 0.1-4.6%) when using bDMARDs.

Conclusion: In this SLR and meta-analysis in SLE, the frequency of
infection, compared to 5.6% (CI: 0.1-52.6%) for bDMARDs. The attribut-
able risk for developing gram positive infections when using csDMARDs
was 3.9% (CI: 0.2-25%) and 3.5% (CI: 0.1-4.6%) when using bDMARDs.

Conclusion: In this SLR and meta-analysis in SLE, the frequency of
infection, compared to 5.6% (CI: 0.1-52.6%) for bDMARDs. The attribut-
able risk for developing gram positive infections when using csDMARDs
was 3.9% (CI: 0.2-25%) and 3.5% (CI: 0.1-4.6%) when using bDMARDs.

Conclusion: In this SLR and meta-analysis in SLE, the frequency of
infection, compared to 5.6% (CI: 0.1-52.6%) for bDMARDs. The attribut-
able risk for developing gram positive infections when using csDMARDs
was 3.9% (CI: 0.2-25%) and 3.5% (CI: 0.1-4.6%) when using bDMARDs.