baseline hsPRO-C2 and JSN was analyzed by Pearson’s correlation, corrected for age, sex, BMI, race, baseline JSW, and non-steroids anti-inflammatory drugs (NSAID) use. Subjects were divided into quartiles of equal size depending on the hsPRO-C2 levels, and the difference in JSN was investigated. The median level of baseline hsPRO-C2 (1.48 ng/ml) was used as a cut-off for stratifying all the subjects. The difference in JSN over 24 months was investigated in patients dichotomized based on median level. The values were compared with two-way analysis of covariates (ANCOVA).

Results: Baseline plasma hsPRO-C2 levels were negatively correlated with the progression of radiographic joint space narrowing over 24 months ($r = -0.26, p = 0.009$) after adjustment for confounders (Figure 1A). Quartile analysis demonstrated a decreasing trend of hsPRO-C2 in the radiographic progression from quartile 1 to 4 (Figure 1B). One-way ANOVA revealed a significant difference in mean JSN between quartiles 1 and 4 (0.5073 mm versus -0.0691 mm, $p = 0.036$, Figure 1B). JSN was significantly larger in the low hsPRO-C2 patients (0.3710 mm) compared to the high hsPRO-C2 patients (0.0195 mm) (Figure 2).

Conclusion: These data suggest that symptomatic knee OA subjects with lower levels of hsPRO-C2 at baseline presented more radiographic medial JSN progression as compared to the subjects with higher levels of hsPRO-C2. The biomarker hsPRO-C2 may be useful for predicting OA progression.

Disclosure of Interests: Yunyun Luo Employee of: I've been working in Nordic Bioscience before I started PhD., Jonathan Samuels: None declared, Svetlana Krasnokutsky: None declared, Yi He Employee of: I hold shares of Nordic Bioscience, Employee of: I am a full-time employee of Nordic Bioscience, Anne-Christine Bay-Jensen: None declared, Svetlana Krasnokutsky: None declared, Yi He Employee of: I hold shares of Nordic Bioscience before I started PhD., Jonathan Samuels: None declared, Gunnar Tomasson 10.

REFERENCES

Figure 2. Medial joint space narrowing (JSN) on the signal knee over 24 months. The values were compared with two-way analysis of covariates (ANCOVA). Data were adjusted for BMI, sex, age, race, baseline medial JSW and NSAID user. Asterisks indicate the following: $p < 0.05$. All values were presented as means and standard error of the mean (SEMs).

SA0667 TREATMENT RESPONSE CRITERIA FOR ANCA-ASSOCIATED VASCULITIS: RESULTS OF A SCOPING REVIEW

Sara Monti1,2, Kaitlin A. Quinlin2, Robin Christensen3, Alfred Maho4, Christian Pagnoux1, Carol Langford7, David Jayne8, Peter Merkle9, Gunnar Tomasson10,1, Policlinico S. Matteo, IRCCS Fondazione, Department of Rheumatology, Pavia, Italy; 2University of Pavia, PhD in Experimental Medicine, Pavia, Italy; 3MedStar Georgetown University Hospital, Division of Rheumatology, Washington DC, United States of America; 4Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital and Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark; 5Hospital Saint Louis, University Paris Diderot, Department for Internal Medicine, Paris, France; 6University of Toronto, Viscas clinic; Department of Medicine, Toronto, Canada; 7Cleveland Clinic, Department of Rheumatic and Immunologic Diseases, Cleveland, United States of America; 8University of Cambridge, Department of Medicine, Cambridge, United Kingdom; 9University of Pennsylvania, Division of Rheumatology and Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, United States of America; 10Faculty of Medicine, University of Iceland and Landspitali University Hospital, Reykjavik, Iceland

Background: A comprehensive assessment of outcome measures to assess response to treatment in ANCA-associated vasculitis (AAV) is necessary to implement.