anti-FHL1+ (n=25) and in anti-FHL1 - (n=6) from the cross-sectional analyses. One HC had positive anti-FHL1 titers. We subdivided the patients into 4 groups: anti-FHL1+ “highly positive” (O.D.>1.0), anti-FHL1+ “intermediate positive” (1.0>O.D.>0.75, n=6), “baseline negative” that seroconverted to anti-FHL1+ within the first 36 months and the anti-FHL1 “negative” group. All groups were compared by given OD medians at each of the point of observation. Highly positive patients had persisting high anti-FHL1 titers during the follow-up; on the contrary, both intermediate positive and baseline negative groups were fluctuating around the cut-off point. Eight of 14 (57%) patients from the group “baseline negative” seroconverted to anti-FHL1+ within the first 36 months. The anti-FHL1 “negative” group presented constant low antibody titers during the longitudinal follow-up.

Conclusion: Anti-FHL1 antibody positivity was detected in patients with high titers of anti-FHL1+ autoantibodies in the first available serum sample or developed within the first 36 months after diagnosis and persisted over many years. A group of patients with intermediate levels had fluctuating positivity over the years. It is still unknown if the anti-FHL1 antibody titer is a marker of prognosis and/or damage in IM; thus, clinical data needs to be addressed, and in-vitro experiments and biochemical characterization of this autoantibody are still required.


REFERENCES

Acknowledgement: This study was funded by FOREUM (www.foreum.org)

Table 1. Results of ICC for different IMU spinal mobility tests

<table>
<thead>
<tr>
<th>Movement</th>
<th>AFE</th>
<th>Lat</th>
<th>Rot</th>
<th>AFE</th>
<th>Lat</th>
<th>Rot</th>
<th>IMU-ASMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-rater</td>
<td>0.95</td>
<td>0.87</td>
<td>0.97</td>
<td>0.89</td>
<td>0.84</td>
<td>0.76</td>
<td>0.96</td>
</tr>
<tr>
<td>Inter-rater</td>
<td>0.96</td>
<td>0.96</td>
<td>0.98</td>
<td>0.94</td>
<td>0.94</td>
<td>0.77</td>
<td>0.98</td>
</tr>
<tr>
<td>Test-retest</td>
<td>0.88</td>
<td>0.96</td>
<td>0.85</td>
<td>0.91</td>
<td>0.94</td>
<td>0.81</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Table A16. SAT0660 PROPOSAL OF CORE OUTCOME DOMAINS IN MIXED CRYOGLOBULINEMIC VASCULITIS

Guilio Guerini1, Carlo Alberto Scarl1, Lucia Valtaggio1, Simone Giambalvo2, Marco Sebastiani2, Caterina Vacchi3, Luca Quarucci4, Maurizio Pietrogrande4, Italian Group for the Study of Cryoglobulinemia (GISC), 1Rheumatology Unit, University of Ferrara and University Ospedaliero-Universitaria S. Anna, Department of Medical Sciences, Cona (Ferrara), Italy, 2University of Modena, Azienda Policlinico of Modena, Department of Medical and Surgical Science, Modena, Italy, 3Clinic of Rheumatology, University Hospital ‘Santa Maria della Misericordia’, Department of Medical and Biological Sciences, Udine, Italy, 4University of Milan, Department of Health Sciences, Milano, Italy

Background: Cryoglobulinaemic vasculitis is immune complex mediated vasculitis of medium and small-size vessels. This vasculitis involves mainly kidneys, peripheral nervous system, skin and joints. Currently, no standardized outcome measures are available for the evaluation of treatments in patients with cryoglobulinemic vasculitis.

Objectives: To identify a core set of outcome measure (what to measure) for clinical studies for mixed cryoglobulinemic syndrome, following the OMERACT filter 2.0. [Ref]

Methods: A search was made in Medline (via PubMed) and Embase using a standardized search [filter https://omeracthandbook.org]. This review considered studies that included patients with Mixed (type 2 and 3) cryoglobulinemic syndrome, any type of outcome measures, articles in