
OP0126 LYMPHOMA ARISING AT THE TIME OF DIAGNOSIS OF PRIMARY SJÖGREN SYNDROME: A HIGHLY-ACTIVE SYSTEMIC SUBSET OF THE DISEASE

Soledad Retamozo¹, Nihan Acar-Denizli², Wan Fai Ng³, Antónia Szántó⁴, Astrid Rasmussen⁵, Raphaèle Seror⁶, Li Xiaomei⁷, Chiara Baldini⁸, Jacques-Eric Gottenberg⁹, Pulukool Sandhya¹⁰, Luca Quartuccio¹¹, Roberta Priori¹², Gabriela Hernandez-Molina¹³, Berkan Armagan¹⁴, Aike A. Kruize¹⁵, Seung-Ki Kwok¹⁶, Marika Kvarnstrom¹⁷, Sonja Praprotnik¹⁸, Damien Sene¹⁹, Roser Solans-Laqué²⁰, Maureen Rischmueller²¹, Thomas Mandl²² Yasunori Suzuki²³, David Isenberg²⁴, Valeria Valim²⁵, Agata Sebastian²⁶, Gunnel Nordmark²⁷, Hendrika Bootsma²⁸, Hideki Nakamura²⁹, Gunnel Nordmärk⁻¹, Hendrika Bootsmä⁻², Hideki Nakamura⁻², Roberto Giacomelli³⁰, Valerie Devauchelle-Pensec³¹, Benedikt Hofauer³², Michele Bombardieri³³, Virginia Fernandes Moça Trevisani³⁴, Daniel Hammenfors³⁵, Sandra Pasoto³⁶, Tamer A Gheita³⁷, Fabiola Atzeni³⁸, Jacques Morel³⁹, Cristina Vollenveider⁴⁰, Sandra Consani-Fernández⁴¹, Xavier Mariette⁶, Manuel Ramos-Casals⁴², Pilar Brito-Zerón^{42,43}, Elena Bartoloni Bocci⁴⁴. ¹INICSA-UNC-CONICET, IUCBC, Cordoba, Argentina; ²Mimar Sinan Univ, Istambul, Turkey, ³Newcastle Univ, Newcastle, United Kingdom; ⁴Debrecen Univ, Debrecen, Hungary, ⁵OMRF, Oklahoma, United States of America; ⁶Univ Paris Sud, INSERM, Paris, France; ⁷Anhui Provincial Hosp, Hefei, China: ⁸Pisa Univ. Pisa. Italy: ⁹Strasbourg Univ. CNRS. Strasbourg. France: ¹⁰Christian Med Coll and Hosp, Vellore, India; ¹¹H. "Sta Maria della Misericordia", Udine, Italy; ¹²Sapienza Univ, Rome, Italy; ¹³INCMNSZ, Mexico, Mexico; ¹⁴Hacettepe Univ, Ankara, Turkey, ¹⁵Univ Medical Center, Utrecht, Netherlands; ¹⁶Catholic Univ of Korea, Seoul, Korea, Rep. of (South Korea); ¹⁷Karolinska Institute, Stockholm, Sweden; ¹⁸Univ Medical Centre, Ljubljana, Slovenia; ¹⁹Univ Paris VII Publique, Paris, France; ²⁰Vall Hebron, Barcelona, Spain; ²¹Western Australia Univ, Crawley, Australia; ²²Malmö Hosp, Lund Univ, Lund, Sweden; ²³Kanazawa Univ Hosp, Ishikawa, Japan; ²⁴Univ College, London, United Kingdom; ²⁵Federal Univ Espírito Santo, Vitória, Brazil; ²⁶Wroclaw Medical Hosp, Wroclaw, Poland; 27 Uppsala Univ, Uppsala, Sweden; 28 Univ Medical Center, Groningen, Netherlands; ²⁹Nagasaki Univ, Nagasaki, Japan; ³⁰L'Aquila Univ, L'Aquila, Italy, ³¹Brest Univ Hosp, CERAINO, Brest, France; ³²Technische Univ, München, Germany, ³³Queen Mary Univ, London, United Kingdom; ³⁴Federal Univ of São Paulo, São Paulo, France; ³⁵Haukeland Univ Hosp, Bergen, Norway, ³⁶Hosp das Clínicas, USP, São Paulo, Brazil; ³⁷Cairo Univ, Cairo, Egypt, ³⁸Messina and Milan Univ, Mialn, Italy; ³⁹Montpellier Univ Hosp, Montpellier, France; ⁴⁰German Hosp, Buenos Aires, Argentina; ⁴¹Hosp Maciel, Montevideo, Uruguay; ⁴²H. Clinic, IDIBAPS, Barcelona, Spain; ⁴³H. CIMA-Sanitas, Barcelona, Spain; 44 Perugia Univ, Perugia, Italy

Objectives: To analyse the phenotype of patients with primary Sjogren syndrome (SjS) in whom a lymphoproliferative disease is diagnosed concomitantly. **Methods:** By January 2019, The Big Data Sjögren Project included 11,420 consecutive patients with primary SjS recruited from 24 countries of the five

continents. **Results:** 117 (1%) patients were diagnosed with lymphoma and primary SjS synchronously. Age-gender adjusted multivariate analysis identified the following features associated with lymphoma (OR; CI95%): male gender (4.61; 2.88-7.18), White ethnicity (3.51; 1.78-7.91), abnormal oral tests (3.4; 1.38-10.88), positive biopsy (3.2; 1.3-10.17), positive RF (2.27; 1.48-3.53), hypocomplementemia (3.39; 2.06-5.54), and cryoglobulins (4.74; 2.57-8.38). Activity (score > 1) in the constitutional (2.97; 1.86-4.62), glandular (3.11; 2.1-4.57), cutaneous (2.17; 1.28-3.52), peripheral nerve (2.56; 1.4-4.41) and hematological (2.49; 1.64-3.75) ESSDAI domains was associated with lymphoma (frequencies summarized in the Figure).

Conclusion: Patients diagnosed concomitantly with primary SjS and lymphoma have a very specific, highly-active phenotype (men, White, severe oral

involvement, cryoglobulinemic-related immunological markers, and high systemic activity).

Disclosure of Interests: : Soledad Retamozo: None declared, Nihan Acar-Denizli: None declared, Wan Fai Ng: None declared, Antónia Szántó: None declared, Astrid Rasmussen: None declared, Raphaèle Seror Grant/research support from: Pfizer, Consultant for: Bristol-Myers Squibb, Pfizer, Amgen, Eli Lilly, Roche, Celgene, GlaxoSmithKline, MedImmune, Xiaomei Li: None declared, Chiara Baldini: None declared, Jacques-Eric Gottenberg Grant/research support from: Bristol-Myers Squibb, Grant/research support from: Bristol-Myers Squibb, Consultant for: Bristol-Myers Squibb, Lilly, Pfizer, Sanofi-Genzyme, UCB Pharma, Consultant for: Bristol-Myers Squibb, Eli Lilly, UCB, Sanofi-Genzyme, Pfizer, Pulukool Sandhya: None declared, Luca Quartuccio: None declared, Roberta Priori: None declared, Gabriela Hernandez-Molina: None declared, Berkan Armagan: None declared, Aike A. Kruize: None declared, Seung-Ki Kwok: None declared, Marika Kvarnstrom: None declared, Sonja Praprotnik: None declared, Damien Sene: None declared, Roser Solans-Laqué: None declared, Maureen Rischmueller Consultant for: Abbvie, Bristol-Meyer-Squibb, Celgene, Glaxo Smith Kline, Hospira, Janssen Cilag, MSD, Novartis, Pfizer, Roche, Sanofi, UCB, Thomas Mandl: None declared, Yasunori Suzuki: None declared, David Isenberg: None declared, Valeria Valim: None declared, Agata Sebastian: None declared, Gunnel Nordmark: None declared, Hendrika Bootsma: None declared, Hideki Nakamura: None declared, Roberto Giacomelli Grant/research support from: Pfizer, Actelion, Speakers bureau: Actelion, Bristol-Myers Squibb, Merck Sharp & Dohme, Abbvie, Pfizer, Sobi, Roche, Valerie Devauchelle-Pensec Grant/research support from: Roche-Chugai, Speakers bureau: MSD, BMS, UCB, Roche, Benedikt Hofauer Consultant for: Consultant for Galvani Bioelectronics for the area of sleep disorders., Michele Bombardieri Grant/research support from: Celgene, Consultant for: Medimmune, Virginia Fernandes Moça Trevisani: None declared, Daniel Hammenfors: None declared, Sandra Pasoto: None declared, Tamer A Gheita: None declared, Fabiola Atzeni: None declared, Jacques Morel: None declared, Cristina Vollenveider: None declared, Sandra Consani-Fernández: None declared, Xavier Mariette Grant/research support from: Servier, Consultant for: AstraZeneca, Bristol-Myers Squibb, GlaxoSmithKline, Janssen, Pfizer, UCB Pharma, Manuel Ramos-Casals: None declared, Pilar Brito-Zerón: None declared, Elena Bartoloni Bocci: None declared

DOI: 10.1136/annrheumdis-2019-eular.2591

OP0127 DISEASE PRESENTATION OF 1,312 CHILDHOOD-ONSET SYSTEMIC LUPUS ERYTHEMATOSUS: INFLUENCE OF ETHNICITY

Lucia Campos¹, Fernanda Fiorot¹, Aline G. Islabão², Rosa M. Pereira³, Maria T. Tererri⁴, Claudia Saad-Magalhães⁵, Glaucia V. Novak¹, Beatriz Molinari¹, Ana Paula Sakamoto⁴, Nadia Aikawa¹, Octávio Peracchi⁴, Simone Appenzeller⁶ Virginia Ferriani⁷, Marco Felipe Silva⁸, Adriana Fonseca⁹, Flávio R. Sztainbok¹⁰, Luciana Paim¹¹, Melissa Fraga¹², Eunice M. Okuda¹³, Blanca Bica⁹, Evaldo Sena¹⁴, Ana Julia Moraes¹⁵, Ana M. Rolim¹⁶, Paulo F. Spelling¹⁷, Iloite M. Scheibel¹⁸, Andre S. Cavalcanti¹⁹, Erica Naka²⁰, Teresa C Robazzl²¹, Luciano Junqueira²², Flávia P. Santos²³, Valeria C. Ramos²⁴, Magda Carneiro-Sampaio²⁵, Eloisa Bonfa³, Clovis A. Silva¹, Brazilian Childhood-onset Systemic Lupus Erythematosus Group. ¹Children's Institute HC FMUSP, Sao Paulo, Brazil; ²Hospital de Brasilia, Brasilia, Brazil; ³Rheumatology Department HC FMUSP, Sao Paulo, Brazil: ⁴UNIFESP, Sao Paulo, Brazil: ⁵UNESP Botucatu, Botucatu, Brazil: ⁶UNICAMP, Campinas, Brazil; ⁷USP Ribeirao, Ribeirao Preto, Brazil; ⁸Hospital Geral de Fortaleza, Fortaleza, Brazil; ⁹UFRJ, Rio de Janeiro, Brazil; ¹⁰Pedro Ernesto Hospital, Rio de Janeiro, Brazil: ¹¹Albert Sabin Hospital, Fortaleza, Brazil; ¹²Darcy Vargas Hospital, Sao Paulo, Brazil; ¹³Santa Casa de Sao Paulo, Sao Paulo, Brazil; ¹⁴Lauro Vanderley Hospital, Joao Pessoa, Brazil; ¹⁵UFPA, Belem, Brazil; ¹⁶Irma Dulce Hospital, Salvador, Brazil; ¹⁷Hospital Evangelico de Curitiba, Curitiba, Brazil; 18 Hospital Criança Conceição, Porto Alegre, Brazil; 19 UFPE, Recife, Brazil; ²⁰UFMS, Campo Grande, Brazil; ²¹UFBA, Salvador, Brazil; ²²University of Brasilia, Brasilia, Brazil; ²³UFMG, Belo Horizonte, Brazil; ²⁴PUC Sorocaba, Sorocaba, Brazil; 25 Children's Institute HC FMUSP, São Paulo, Brazil

Background: To our knowledge the influence of ethnic background in childhoodonset SLE (cSLE) presentation was not evaluated in a large population of Latin American country.

Objectives: To assess demographic data, clinical manifestations, laboratory abnormalities and disease activity score in cSLE patients according to ethnic groups at diagnosis

Methods: This multicenter study included cSLE patients(ACR criteria) followed in 27 Pediatric Rheumatology services of Brazil. Ethnicities were classified in four groups according to the parents' and all four grandparents' self-reported ethnicity. The statistical analysis was performed using the Bonferroni's correction (p<0.0027).

Results: According to ethnic groups, 1,537 cSLE patients were classified in: Caucasian (n=786), African-Latin American(n=526), Asian(n=8) and others/unknown (n=217). Comparisons between 1,312 African-Latin American and Caucasian revealed similar median age at cSLE diagnosis[12.2(2.6-18) vs. 12.1(0.3-18) years,p=0.234], time interval to diagnosis[0.25(0-12) vs. 0.3(0-10) years,p=0.034] and SLEDAI-2K score[14(0-55) vs. 14(0-63),p=0.781] in both groups. The mean number of diagnostic criteria according to SLICC(6.47±1.911 vs. 5.81±1.631, p<0.0001) and frequencies of maculopapular lupus rash (8% vs. 3%, p<0.0001), palate oral ulcers(17% vs. 11%,p=0.001), tongue oral ulcers (4% vs. 1%, p=0.001) and nonscarring alopecia(29% vs. 16%,p<0.0001) were significantly higher in African-Latin American, whereas malar rash(45% vs. 58%,p<0.0001) was more frequent in Caucasian. The presence of antiphospholipid antibody(23% vs. 12%,p<0.0001), low complement levels(58% vs. 41%, p<0.0001) and isolated direct Coombs test (10% vs. 5%,p=0.001) were also significantly higher in the former aroup.

Conclusion: Our study demonstrated that disease presentation severity of African-Latin American cSLE patients is comparable to Caucasian. Mucocutaneous manifestations and autoantibodies profile were the only distinctive features of the former group. The unique mixed background of Brazilian patients probably minimized race diversity spectrum of these patients.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2019-eular.3838

OP0128 SYSTEMIC LUPUS ERYTHEMATOSUS DISEASE CHARACTERISTICS ASSOCIATED WITH THE TYPE I INTERFERON GENE SIGNATURE: BASELINE DATA OF THE SLE PROSPECTIVE OBSERVATIONAL COHORT STUDY (SPOCS)

Edward R. Hammond¹, Martin Aringer², Laurent Arnaud³, Christine Peschken⁴, Jacob Knagenhjelm⁵, Volkan Baru⁶, Xia Wang¹, Barnabas Desta¹, Raj Tummala¹, David Ginkel¹, <u>Richard Furie</u>⁷, Eric F. Morand⁸. ¹*AstraZeneca, Gaithersburg, MD*, United States of America; ²University Medical Center and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany; ³Service de Rhumatologie, Centre National de Référence des Maladies Autoimmunes et Systémiques Rares (RESO), Université de Strasbourg, INSERM UMR-S 1109, Strasbourg, France, ⁴Department of Medicine and Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; ⁵AstraZeneca, Gothenburg, Sweden; ⁶AstraZeneca, Cambridge, United Kingdom; ⁷Hofstra Northwell School of Medicine, New York, NY, United States of America; 8 Centre for Inflammatory Disease, Monash University, Clayton, VIC, Australia

Background: Despite accumulating data on the role of type I interferons (IFN) in the pathogenesis of SLE, real-world, longitudinal clinical data on the type I IFN gene signature (IFNGS) collected from patients with SLE are limited.

Objectives: This initial analysis of the SLE Prospective Observational Cohort Study (SPOCS; NCT03189875) examined the prevalence of the type I IFNGS (high vs low) and its association with baseline SLE disease characteristics in patients with moderately to severely active SLE receiving standard-of-care treatment.

Methods: SPOCS is an international, multicenter, prospective observational cohort study of patients enrolled with moderately to severely active SLE (SLEDAI-2K ≥6 at entry) from Australia, Canada, France, Germany, Italy, Spain, the United Kingdom, and the United States; a completion date of 2022 is planned. Patients

Baseline Demographics and Clinical Characteristics Total				
Variable	population (N=307)	IFNGS-high (N=210)	IFNGS-low (N=83)	<i>P</i> -value ⁴
Age (years), median (min-max)	46.0 (18-88)	42.5 (18-82)	50.0 (19-88)	< 0.0001
18-29, n (%)	45 (14.7)	38 (18.1)	5 (6.0)	
30-39, n (%)	71 (23.1)	61 (29.0)	9 (10.8)	
40-49, n (%)	68 (22.1)	37 (17.6)	26 (31.3)	
50-59, n (%)	70 (22.8)	42 (20.0)	23 (27.7)	
≥60, n (%)	53 (17.3)	32 (15.2)	20 (24.1)	
BMI (kg/m ²), median (min-max)	26.8 (17-58)	25.5 (17-52)	28.9 (17-58)	0.0029
Age at SLE diagnosis (years), median (min-max)	34 (8–76)	30 (8–76)	42 (8-73)	< 0.0001
Age at first SLE manifestation (years), median (min-max)	31.0 (5-75)	28.5 (7-75)	37.0 (5-66)	0.0005
SLEDAI-2K, total score, median (min-max)	8.0 (4–29)	8.0 (4–29)	6.0 (4–26)	0.0002
SDI, median (min-max)	1.0 (0-10)	1.0 (0-10)	1.0 (0-5)	0.8502
PtGA VAS score, median (min-max) Medical history, n (%)	50.0 (0-100)	48.5 (0-100)	58.5 (5-98)	0.0131
Any comorbidity	254 (82.7)	167 (79.5)	76 (91.6)	0.0136
CNS disorders	28 (9.1)	24 (11.4)	1 (1.2)	0.0048
CV risk factors and CBV disease	101 (32.9)	60 (28.6)	36 (43.4)	0.0150
Joint disease (SLE and non-SLE)	196 (63.8)	123 (58.6)	65 (78.3)	0.0015
Diabetes mellitus	28 (9.1)	14 (6.7)	13 (15.7)	0.0164
Laboratory tests	. ,	. ,	. ,	
Complement C3, (mg/dL)	96.5 (31-191),	90.5 (31-191),	104.0 (60-171),	0.0026
median (min-max), n	142	100	35	
Complement C4, (mg/dL)	17.0 (2-177),	14.0 (2-177),	21.0 (8-164),	0.0005
median (min-max), n	138	97	34	
ANA positive, n (%)b	37 (75.5)	30 (93.8)	6 (42.9)	0.0004
Sm, RNP autoantibody positive, n (%)b	12 (36.4)	12 (50.0)	0 (0.0)	0.0261
dsDNA antibody positive, n (%)b	15 (26.8)	14 (37.8)	1 (7.1)	0.0411

 dsDNA antibody positive, n(%)^b
 15 (26.8)
 14 (37.8)
 1(7.1)
 0.0411

 ANA, antinuclear antibody; BMI, body mass index; CBV, cerebrovascular; CNS, central nervous system; CV, cardiovascular; dsDNA, double-stranded deoxyribonucleic acid; IFNGS, interferon gene signature; max, maximum; min, minimum; PiGA, Pattent Global Assessment of Disease Activity; SDI, Systemic Lupus International Collaborating Clinics (SLICC)/American College of Rheumatology (ACR) Damage Index; SLEDAI-2K, Systemic Lupus Erythematosus Disease Activity Index-2000; Sm, Smith antibody; RNP, ribonucleoprotein antibody; VAS, visual analog scale.

 PIRGS-light vis FINGS-10w, determined by chi-square test, Mann-Whittey U test, or Fisher exact test.
 ¹Total number of patients tested (total, high, low): ANA: 49, 32, 14; Sm, RNP; 32, 24, 6; dsDNA: 56, 37, 14.

Thursday, 13 June 2019 139

are evaluated biannually during a 3-year follow-up period. At each visit, data are collected on disease activity and damage, treatment received, type I IFNGS (stratified high or low IFNGS based on a predefined cutoff), and several patientreported outcomes.

Results: As of November 15, 2018, a total of 307 patients were enrolled in SPOCS (North America, n=184; Europe, n=123), of whom 96.1% (n=295) were female, with a median age of 46 years (range: 18-88). At study entry, the prevalence of high type I IFNGS was 70.5% (n=210) vs 27.9% (n=83) for low type I IFNGS, with 1.7% (n=5) unknown (table, 9 missing data). IFNGS-high patients were younger than IFNGS-low patients (median: 42.5 years [range: 18-82] vs 50 [19-88], P<0.0001) and diagnosed with SLE at an earlier age (P<0.0001). SLE-DAI-2K scores were greater for IFNGS-high patients vs IFNGS-low patients (P=0.0002), while SDI scores were similar between the two groups. Fewer comorbidities were reported for IFNGS-high patients than for IFNGS-low patients (79.5% [n=167] vs 91.6% [n=76], P=0.0136). Lower complement C3 and C4 levels were observed in IFNGS-high vs -low patients. At study entry, antinuclear antibodies and ribonucleoprotein antibodies were more frequent in the IFNGS-high vs IFNGS-low subset of patients. A greater percentage of IFNGS-high patients were dsDNA antibody positive vs IFNGS-low patients (P=0.0411).

Conclusion: The profile of patients with a baseline high type I IFNGS differed from those with a low type I IFNGS, in that those with a high type I IFNGS comprised a group that were on average younger, had greater SLEDAI-2K scores, were more serologically active, and seemed to have fewer comorbidities. As the lupus community evolves from using a classical clinical classification of patients to one based on molecular signatures, it is important to understand the role of the type I interferon pathway on disease activity, treatment, and outcomes. SPOCS recruitment and follow-up are ongoing.

Disclosure of Interests: Edward R. Hammond Employee of: AstraZeneca, Martin Aringer Grant/research support from: Roche, Consultant for: AstraZeneca and Eli Lilly, Laurent Arnaud Consultant for: Alexion, Amgen, AstraZeneca, GSK, Janssen-Cilag, LFB, Lilly, Menarini France, Novartis, Pfizer, Roche-Chugaï, and UCB., Paid instructor for: Alexion, Amgen, AstraZeneca, GSK, Janssen-Cilag, LFB, Lilly, Menarini France, Novartis, Pfizer, Roche-Chugaï, and UCB., Speakers bureau: Alexion, Amgen, AstraZeneca, GSK, Janssen-Cilag, LFB, Lilly, Menarini France, Novartis, Pfizer, Roche-Chugaï, and UCB., Christine Peschken Consultant for: AstraZeneca, Jacob Knagenhjelm Consultant for: I was employed by Dfind Science & Engineering working at AstraZeneca as a contractor statistician from late May 2017 - end April 2018, Employee of: AstraZeneca, Volkan Barut Employee of: AstraZeneca, Xia Wang Shareholder of: AstraZeneca, Employee of: AstraZeneca, Barnabas Desta Employee of: AstraZeneca, Raj Tummala Employee of: AstraZeneca, David Ginkel Employee of: AstraZeneca, Richard Furie Grant/research support from: Biogen, UCB Pharma, but not in the last 12 months, Consultant for: Biogen, UCB Pharma, but not in the last 12 months, Eric F. Morand Grant/research support from: AstraZeneca, Bristol Myers Squibb, Janssen, Merck Serono, and UCB, Consultant for: AstraZeneca, Eli Lilly, Janssen, and Merck Serono, Speakers bureau: AstraZeneca DOI: 10.1136/annrheumdis-2019-eular.3382

OP0129

CAPS CRITERIA FAIL TO IDENTIFY MOST SEVERE PATIENTS WITH ANTIPHOSPHOLIPID SYNDROME ADMITTED TO THE INTENSIVE CARE UNITWITH A NEW THROMBOTIC MANIFESTATION

Marc Pineton de Chambrun^{1,2}, Alexis Mathian¹, Alain Combes², Charles-Edouard Luyt², Zahir Amoura¹, Registre SAPHIR. ¹Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service de médecine interne 2, centre de référence national maladie rare lupus systémique et syndrome des anticorps antiphospholipide, institut E3M, Sorbonne Université, Paris, France; ²Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service de médecine intensive-réanimation, institut de cardiométabolisme et nutrition (ICAN), Sorbonne Université. Paris. France

Background: Catastrophic antiphospholipid syndrome (CAPS) is the most severe manifestation of antiphospholipid syndrome (APS), characterized by the simultaneous occurrence of thrombosis in multiple organs.

Objectives: The objectives of this study were to evaluate the distribution and the prognosis of CAPS criteria in APS patients admitted to the intensive care unit (ICU) with acute thrombotic manifestation.

Methods: We conducted a multicentre retrospective study, from January 2000 to September 2018, including all APS patient admitted to 24 French ICUs with any new thrombotic (arterial, venous or microvascular) manifestation.

Results: 134 single patients were admitted to the ICU for 152 episodes. The number of patients with definite CAPS, probable CAPS and no CAPS was: 11 (7.2%), 60 (39.5%) and 81 (53.5%) respectively. We compared patients with definite/probable CAPS (group 1, n=61) and no CAPS (group 2, n=73). General characteristics and APS-involved organs are reported in Table 1. APS characteristics and biological findings before admission were comparable between both groups. In-ICU and in-hospital length of stay, day-0 SAPS II and day-0 SOFA in-ICU severity scores