USE OF TOCILIZUMAB IN AORTITIS. A MULTICENTER STUDY OF 79 PATIENTS


Background: Aortitis can be idiopathic or associated with other conditions. It is frequently refractory to conventional immunosuppressive therapy. Tocilizumab (TCZ), an anti-IL-6 receptor antibody seems to be effective and safe.

Objectives: Our aim was to assess the efficacy and safety of TCZ at short and long follow-up in a series of patients with Aortitis.

Methods: Retrospective, multicenter study of 79 patients diagnosed of inflammatory aortitis based on imaging techniques (PET/CT, CT angiography and/or MR angiography).

Results: We study 79 patients (61 w/ 18 m), 59 (74.7%) cases were idiopathic and/or MR angiography).

Conclusion: Our results show that idiopathic aortitis occurs in younger than 75% of patients reached a prolonged remission in both groups (35%) received rituximab (RTX) (51%), cyclophosphamide (61%), azathioprine (53%), methotrexate (45%) and other biologics (including alemtuzumab in 3, anakinra in 2, interferon-alfa in 3), 16 (31%) received rituximab (RTX) (51%), cyclophosphamide (61%), azathioprine (53%), methotrexate (45%) and other biologics (including alemtuzumab in 3, anakinra in 2, interferon-alfa in 2 and abatacept in one). Previous treatments were: GCs in all cases, including methylprednisolone infusions (72%) and oral GCs (92%), cyclophosphamide (61%), azathoprine (53%), methotrexate (45%) and mycophenolate mofetil (47%). At inclusion, median BVAS was 5 (range 0-18), including 5 (2-12) in the TNF-alpha blockers group, 5 (2-12) in the RTX group and 4 (0-6) in the TCZ group. After median follow-up of 34.4 months (IQR 21.5-59.5), remissions, partial responses and treatment failure, respectively, were noted in 41%, 6% and 53% for TNF-alpha blockers recipients, 25%, 12% and 63% for RTX recipients, and 57%, 0% and 43% for TCZ recipients. No remission was noted in patients treated with anakinra, alemtuzumab and abatacept.

Disclosure of Interests: Monica Calderón-Górcnke: None declared, J. Loricera: None declared, D. Prieto-Peña: None declared, Victore Alidascor: None declared, Santos Castañeda Consultant for: Amgen, BMS, Pfizer, Lilly, MSD, Roche, Sanofi, UCB, Ignacio Vílla-Blanco: None declared, Alicia Hurbima: None declared, Clara Moriano: None declared, Susana Romero-Yuste: None declared, J. Narváez Consultant for: Bristol-Myers Squibb, Catalina Gomez-Arango: None declared, Eva Perez-Pampin: None declared, Rafael Meiero: None declared, Marcelino Revenga: None declared, Noelia Alvarez-Rivas: None declared, Francisca Sivera: None declared, María Alívaz del Bueno: None declared, Luisa Marena Rojas: None declared, Eva Galindez: None declared, Beatriz Arca: None declared, Roser Solans-Laquè: None declared, Carlos Vázquez: None declared, Pau Lluch: None declared, Eva Salgado-Pérez: None declared, Cristina Luna-Gomez: None declared, Francisco J. Toyos Sáenz de Miera: None declared, Nagore Fernández-Llanio: None declared, Antonio Garcia: None declared, Carmen Larena: None declared, Natalia Palmou-Fontana: None declared, Vanessa Calvo-Rio: None declared, Carmen González-Vela: None declared, Alfonso Corrales: None declared, María Varela-Garcia: None declared, Elena Aurrecochea: None declared, Raquel Dos-Santos: None declared, José Luis Martín-Varillas: None declared, Sabela Fernández: None declared, J. Luis Herméndez: None declared, Miguel A. González-Gay: None declared, Ricardo Blanco: None declared, Francisca Sivera: None declared, Raquel Dos-Santos: None declared, Rafael Melero, Marcelino Revenga: None declared, Noelia Alvarez-Rivas: None declared, Francisca Sivera: None declared, Javier Galindez: None declared, Beatriz Arca: None declared, Roser Solans-Laquè: None declared, Carlos Vázquez: None declared, Pau Lluch: None declared, Eva Salgado-Pérez: None declared, Cristina Luna-Gomez: None declared, Francisco J. Toyos Sáenz de Miera: None declared, Nagore Fernández-Llanio: None declared, Antonio Garcia: None declared, Carmen Larena: None declared, Natalia Palmou-Fontana: None declared, Vanessa Calvo-Rio: None declared, Carmen González-Vela: None declared, Alfonso Corrales: None declared, María Varela-Garcia: None declared, Elena Aurrecochea: None declared, Raquel Dos-Santos: None declared, José Luis Martín-Varillas: None declared, Sabela Fernández: None declared, J. Luis Hernández: None declared, Miguel A. González-Gay: None declared, Ricardo Blanco: None declared, Francisca Sivera: None declared, Pau Lluch: None declared, Eva Salgado-Pérez: None declared, Cristina Luna-Gomez: None declared, Francisco J. Toyos Sáenz de Miera: None declared.
events in 2 (testicular abscess and worsening renal failure) and refractory disease in 2.

Conclusion: The results of this study suggest that TNF-alpha blockers and TCZ may achieve higher rates of remission and GC-sparing in relapsing and/or refractory PAN than other biologics. Our data warrant further study to confirm or not these findings.

Disclosure of Interests: A. Alice Canzian; None declared. Omer Karadag: None declared. Anne Contis: None declared. Francois Maurier: None declared. Silvia Santorelli: None declared. Laure Denis: None declared. Sebastien Sanges: None declared. Claire De Moreuil: None declared. Cécile-Audrey Durel: None declared. Stephane Durup: None declared. Marie Jachiet: None declared. Diane Rouzaud: None declared. Carlo Sarvarani: None declared. Franco Schiavon: None declared. Lorenzo Dagna Consultant for: Prof Lorenzo Dagna received consultation honoraria from Abbvie, Amgen, Biotest-Myers Squibb, Celtrion, Novartis, Pfizer, Sanofi-Genzyme, and SOCIB. Francesc Bonnet: None declared. David Jayne Grant/research support from: David Jayne has received research grants from Chemocentryx, GSK, Roche/Genentech and Sanofi-Genzyme. He has received consultancy fees from Astra-Zeneca, Boehringer-Ingelheim, Chemocentryx, Chugai, GSK, Inria-RX, Insmed and Takeda, Looli Guillemin: None declared. Benjamin Terrier: None declared.


SAT0222

COOPERATION OF T FOLLICULAR HELPER CELLS AND B CELLS IN TERTIARY LYMPHOID STRUCTURES IN TAKAYASU ARTERITIS

Anne-Claire Desbois1, Anna Maciejewski-Duval2, Paul Régnier2, Valentin Quiniou2, Cloé Comarmond2, Hélène Vallet2, Patrick Bruneval3, Pierre Fouret4, Michele Rosenzwajg2, David Klatzmann2, Fabien Koskas2, Anne-Claire Desbois1, Anna Maciejewski-Duval2, Paul Régnier2, Alice Canzian: None declared. Omer Karadag: Disclosure of Interests: None declared.

Background: Takayasu’s arteritis (TA) and giant cell arteritis (GCA), the two most common types of large vessel vasculitis (LVV), are characterized by an arterial inflammatory granulomatous infiltrate mainly located in the media and the adventitia. However, distinct histological features of the immune response are poorly known.

Objectives: To investigate distinct pathological mechanisms of the immune response in patients with GCA and TA.

Methods: We performed comparative immunohistochemistry analysis of aorta of GCA and TA patients. We performed microarray gene analysis of purified CD4+ T cells of TA and GCA patients. Reverse transcriptase PCR, flow cytometry analysis and cell culture were used to investigate T and B cell subpopulations in 54 patients with TA, 52 with GCA and 60 control patients.

Results: We found higher proportion of tertiary lymphoid structures composed of CXCR5+, CD4+, PD-1+ and CD20+ cells in inflammatory aortic lesions in TA as compared to GCA. We demonstrated increased proportion of aortic B cells in TA.

We next evaluated differentiation of circulating CD4+ T cells in both diseases. We found genes differentially expressed between CD4+ T cells of TA compared to GCA patients. We identified a specific “T follicular helper” (Thf) signature in TA patients. We also found a specific Thf 17 signature in TA patients. Flow cytometry analysis confirmed increased circulating Thf, defined as CXCR5+ CD4+ T cells, as compared to GCA and healthy donors (median of 15.4 (10.3;20.8) versus 5.3 (1.4;12.2%); 9.7 (5.6;12.5%); p<0.0001 and p=0.0001) in TA, GCA and HD, respectively. Among Thf subpopulations, Thf-17, CXCR5+ CCR6+ CXCR3− CD4+ cells, were specifically increased in TA. Functionally, CXCR5+ CD4+ T cells of TA patients helped B cells to differentiate into memory cells, to proliferate and to secrete type I immunoglobulins.

We sequenced the TRC repertoire w/v in CD3+CD4+CXCR5− and CD3−CXCR5+ cells in aortic and blood samples from 2 patients. In both patients, we identified oligoclonal profile of TRC repertoire only for aortic CXCR5+ cells, suggesting antigen selection of CXCR5+ CD4+ T cells.

Conclusion: We provide evidence of the presence of tertiary lymphoid structures composed of Thf and B cells in TA aorta. We identified a specific Thf signature in circulating CD4+ T cells that distinguishes TA and GCA patients. The key cooperation of Thf and B cells in TA and the oligoclonal repertoire of CXCR5+ CD4+ T cells strongly suggest the role of antigenic trigger.


SAT0223

FACTORS ASSOCIATED WITH DAMAGE PROGRESSION IN BEHÇET’S SYNDROME UVEITIS

Yilmaz Ozyazgan1, Didar Ucar1, Mustafa Erdogan2, Yesim Ozguler2, Gulen Hatemi2, Sebahattin Yurdakul2, Vedat Hamuryuden3, Izzet Fresko2, Melike Melioglu4, Emine Seyahi5, Serdal Ugurli6, Hasan Yazici7, 1Istanbul University - Cerrahpasa Medical Faculty, Department of Ophthalmology, Istanbul, Turkey; 2Istanbul University – Cerrahpasa, Cerrahpasa Medical Faculty, Internal Medicine, Division of Rheumatology, Istanbul, Turkey

Background: Uveitis in Behçet’s syndrome (BS) follows a recurrent disease course with inflammatory exacerbations causing damage in the uvea, retina and optic nerve even with treatment. Frequent attacks and posterior involvement are considered as predictors of poor visual outcome.

Objectives: The aim of this study is to delineate the predictors of damage progression and to define a more useful scoring method among a group of BS patients with posterior involvement as defined following attacks.

Methods: Patients with uveitis who were registered in our multidisciplinary BS clinic between 1990 and 2008 were screened. Among these, 50 patients who were followed for at least 10 years, who were regularly seen in our clinic at least once in every 4 months, who did not have Grade 2 damage at baseline, and who represented different levels of damage severity during the last visit (between Grade 0 and 5) were selected. The damage severity was graded according to a validated damage grading instrument (5 worst) specifically developed for BS uveitis (Ozyazgan et al. in preparation). One patient was later excluded because it was realized that he did not fulfill these criteria. A standard form was used for retrieving data on demographics, baseline and final visual acuities, number and localisation (anterior/posterior/panuveitis) of attacks during follow-up, presence of retinal infiltration, retinal hemorrhage and hypopyon uveitis. Candidate factors for damage progression were compared between patients who had a progression in damage score and those who did not.

Results: 98 eyes of 49 patients (M:F 35:14, mean age at baseline 27±8 years, mean follow-up duration 20.9±5.5 years, mean number of visits 76.5±35.2) were evaluated. The mean visual acuity was 0.02±0.08 at baseline and 0.47±0.52 at the final visit. The mean number of attacks was 13±2.9. Damage grades at baseline were Grade 0 in 79, Grade 1 in 16 and Grade 2 in 3 eyes. Damage grades at final visit were Grade 0 in 15, Grade 1 in 21, Grade 2 in 32, Grade 3 in 12, Grade 4 in 10 and Grade 5 in 8 eyes. There was damage progression in 81/98 eyes at the final visit. Isolated anterior uveitis attacks were not associated with progression of damage (2.5±2.9 vs 2.8±5.5, p=0.7). Parameters that were significantly more frequent among patients with damage progression were: number of attacks (14.5±10.8 vs 23.3±12.3, p=0.008), number of posterior attacks (4.0±1.2 vs 6.5±4.9, p=0.001), number of panuveitis attacks (0.8±1.3 vs 6.6±5.0, p=0.001), number of attacks with severe vitreous opacity preventing examination of the retina (0 vs 3.2±3.8, p=0.001), retinal infiltration (0.2±0.4 vs 1.4±1.9, p<0.001) and retinal hemorrhages in the arcuate area (0.1±0.2 vs 0.7±1.4, p=0.001), and the number of hypopyon attacks (0.2±1.0 vs 0.9±1.3, p=0.019).

Conclusion: This study confirmed that the anterior uveitis attacks are not associated with progressive damage in BS, whereas posterior and panuveitis attacks, attacks causing severe vitreous opacity, retinal infiltrates and hemorrhage in the arcuate region and hypopyon attacks are important predictors of damage. Patients showing these features should be treated more aggressively.

REFERENCE