had to be supplemented by the individual patient reported treatment goals.

REFERENCES


Table 1. Comparison of achieved T2T and individual patient goals

<table>
<thead>
<tr>
<th>T2T achieved, n (%)</th>
<th>Yes</th>
<th>No</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient goal(s) achieved, n (%)</td>
<td>(43.6)</td>
<td>(21.8)</td>
<td>(54.7)</td>
</tr>
<tr>
<td>Overall</td>
<td>(17.8)</td>
<td>(16.8)</td>
<td>(16.8)</td>
</tr>
<tr>
<td>Overall</td>
<td>61.4</td>
<td>38.6</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Disclosure of Interests: Claudia Oppenauer: None declared, Martina Durechova: None declared, Michael Zauner: None declared, Martin Posch: None declared, Susanne Uraich: None declared, Klaus Machold Grant/ research support from: AbbVie, Daniel Aletaha Grant/research support from: AbbVie, Bristol-Myers Squibb, and MSD, Consultant: for: AbbVie, Bristol-Myers Squibb, Eli Lilly, Janssen, Medac, Merck, MSD, Pfizer Inc, Roche, and UCB, Speakers bureau: AbbVie, Bristol-Myers Squibb, Eli Lilly, Janssen, Medac, Merck, MSD, Pfizer Inc, Roche, and UCB, Ricardo Ferreira: None declared, Tanja Stamm Grant/research support from: TS has received grant support from AbbVie., Paid instructor for: TS has received speaker fees from AbbVie, Janssen, MSD, Novartis, and Roche.

ACKNOWLEDGEMENT: We want to thank all patients who participated in this study. Further thanks to the students Marie Louise Brand, Saskia Langthaller, Hanna Mües and Jim Schmeckenbecher for assisting in patient recruitment.

RESULTS:

Sex: 8-10-week-old NR4A1 -/-, CX3CR1 ERCre.zsGFP, and C57Bl/6 mice were used in all studies. CX3CR1 ERCre.zsGFP were utilized for cell tracking studies and joint shielded bone marrow chimeras via administration of tamoxifen (tam). Intravascular monocytes were identified using fluorescent anti CD45 antibody before perfusion. STIA was induced via I.V. KBxN sera. Monocyte populations were quantified by flow cytometry and FACs sorted for RNA-sequencing (RNA seq). Nonclassical tissue monocytes were identified CD45+CD11bLy6G+TIM4D6Ly6c+ and subdivided into intravascular (CD45-labeled, CD43+), trans-vascular (CD45-labeled CD43) and extravascular (no CD45-label). Human synovium was obtained from ultrasound guided synovial biopsies and CD45+ cells were FAC-Sorted for single cell RNA seq.

RESULTS: NRA1+ mice exhibited a 95% reduction in circulating Ly6c+ monocytes but retain Ly6c+ cells in the joint and develop STIA. The transcriptional profiling of bulk populations of Ly6c+ cells in the synovium are distinct from those circulating in the blood. We then identified three populations of Ly6c+ monocytes in the joint; extra-vascular, trans-vascular, and intra-vascular cells using 18 color flow cytometry. Lineage tracing studies reveal the origin of extra-vascular and trans-vascular synovial monocytes are from the embryo while the intravascular monocytes are derived post-natally. The intravascular monocytes are depleted with clodronate loaded liposomes while the extravascular and trans-vascular remain unaffected. Moreover, the intravascular monocytes rapidly expand during the first 1 hour of STIA, increasing by 30x in population size. RA patients also display similar populations of non-classical monocytes using single cell RNA seq.

CONCLUSION: We have identified and described three previously uncharacterized populations of non-classical monocytes cells in the joint, an intra-vascular adherent, a trans-vascular population and an extra-vascular.

REFERENCES


Disclosure of Interests: None declared