ANALYSIS OF CHRONOLOGICAL CHANGES IN JAPANESE VERSION OF HEALTH ASSESSMENT QUESTIONNAIRE SCORE AND FACTORS ASSOCIATED WITH J-HAQ REMISSION AT 5 YEARS AFTER DISEASE ONSET IN PATIENTS WITH RHEUMATOID ARTHRITIS USING THE IORRA COHORT

Mai Abe1, Eiichi Tanaka2, EiSuke Inoue1,2, Mikka Kawano1, En Sugano2, Naohiro Sugitani1,2, Kumiko Sakai1, Yoko Shinmizu1, Moeko Ochiai1, Rei Yamaguchi1, Naoki Sugimoto1, Katsunori Ikari1, Ayako Nakajima1,2, Atsuo Taniguchi1, Hisashi Yamanaka1,3, Tokyo Women's Medical University, Department of Rheumatology, Tokyo, Japan; 3Mie University Hospital, Center for Rheumatic Diseases, Mie, Japan

Background: Recent advances in rheumatoid arthritis (RA) treatment including the introduction of biologics have greatly affected treatment strategies for RA, achieving remission as a realistic treatment target. However, few reports have been concerned chronological changes in long-term physical dysfunction among large numbers of RA patients in daily practice.

Objectives: To evaluate chronological changes in Japanese version of Health Assessment Questionnaire score (J-HAQ) score and J-HAQ remission rates at a recent RA onset using the Institute of Rheumatology, Rheumatoid Arthritis (IORRA) cohort.

Methods: RA patients who developed RA between 2000 and 2010 and who first visited our hospital during the year of RA onset were divided into two groups: 1) former onset group (RA onset between 2000 and 2005) and 2) recent onset group (RA onset between 2006 and 2010). J-HAQ scores and J-HAQ remission rates at baseline and at 5 years after onset were investigated for each group, and factors associated with J-HAQ remission after 5 years were assessed by logistic regression analysis. Methotrexate (MTX), corticosteroid (steroid) and biologic DMARDs user (bDMARDs) was defined as the patients if they were used medication during the observation period.

Results: The former onset group and recent onset group included 357 and 291 RA patients, respectively. For the former onset group, the average J-HAQ score/J-HAQ remission rate at baseline and 5 years after the onset were 0.659/54.6% and 0.430/71.4%, respectively. The recent onset group showed significant improvements relative to the former onset group in J-HAQ score/J-HAQ remission rates at baseline and 5 years after onset were 0.695/46.5% and 0.307/71.4%, respectively. The percentage of MTX and bDMARDs users was significantly higher in the recent onset group (former vs. recent onset group: MTX: 70.9% vs. 86.6% [p<0.0001]; bDMARDs: 5.3% vs. 23.0% [p<0.0001]). Significant factors associated with achieving J-HAQ remission at 5 years after RA onset were: patients in the recent onset group (p<0.001), male (p<0.001), younger (p<0.001), lower J-HAQ score (p=0.001) at baseline, and non-steroid user (p=0.001).

Conclusion: In daily practice, J-HAQ scores for RA patients remarkably improved with recent advances in RA treatment strategies. To achieve J-HAQ remission at 5 years of RA onset, beginning treatment in the early disease stage is needed to prevent deterioration of J-HAQ and treatments that avoid steroid use appear to be important.

Acknowledgements: All patients who participated in the IORRA survey and all of the members of the Institute of Rheumatology, Tokyo Women's Medical University, for the successful management of the IORRA cohort.

Disclosure of Interests: Mai Abe: None declared, Eiichi Tanaka Speakers bureau: Abbvie, Asahi Kasei pharma co., Bristol Myers Squibb, Chugai Pharmaceutical, Daiichi Sankyo Co., Eisai Pharmaceutical, Janssen Pharmaceutical K.K., Nippon Kayaku, Pfizer, Takeda Pharmaceutical, Taisho Toyama Pharmaceutical Co., and UCB Pharma, EiSuke Inoue: None declared, Mikka Kawano: None declared, Eri Sugano: None declared, Naohiro Sugitani: None declared, Naoki Sugimoto: None declared, Katsunori Ikari: None declared, Ayako Nakajima: Grant/research support from: Asahi Kasei pharma co., Chugui Pharmaceutical, Daihi Sanky Co., Pfizer, Kissel Pharmaceutical Co., and Mitsubishi Tanabe Pharma Corporation, Atsuo Taniguchi: None declared, Hisashi Yamanaka Grant/research support from: Abbvie, Eisai, Bristol-Meyers, Novartis, Behringer, Astellas, Kaken, Nippon-Shinayaku, Pfizer, UCB, Ayumi, Ono, Daiichi-Sankyo, Taisyo-Toyama, Takeda, Tanabe-Mitsubishi, Chugai, Teijin Pharma, Torii, YLbio, Speakers bureau: Bristol-Meyers-Squibb, Princeton, United States of America; Brigham and Women's Hospital, Boston, United States of America; Mu Sigma, Bangalore, India

Disclosure of Interests: None declared, Naoki Sugimoto: None declared, Katsunori Ikari: None declared, Moeko Ochiai: None declared, Rei Yamaguchi: None declared, Hiro Sugitani: None declared, Kumiko Saka: None declared, Yoko Shinmizu: None declared, Moeko Ochiai: None declared, Rei Yamaguchi: None declared, Naoki Sugimoto1, Katsunori Ikari1, Ayako Nakajima1,2, Atsuo Taniguchi1, Hisashi Yamanaka1, 1Tokyo Women's Medical University, Department of Rheumatology, Tokyo, Japan; 3Mie University Hospital, Center for Rheumatic Diseases, Mie, Japan

Background: RA-associated interstitial lung disease (RA-ILD) is an extra-articular manifestation of RA and is one of the leading causes of death in patients (pts) with RA.1 Previous studies have indicated that clinical factors such as age, sex, smoking and autoantibody positivity are strongly associated with RA-ILD.2 There is also evidence of active RA being related to increased risk for clinically apparent ILD.2 However, there are limited data on how pts with RA-ILD are managed for their joint conditions and joint outcomes.

Objectives: To evaluate the treatment patterns in pts with subclinical and clinical RA-ILD compared with pts with RA without ILD, and to assess joint disease activity at baseline and change in disease activity by treatment in all cohorts.

Methods: Data from adult pts with RA enrolled in a longitudinal sequential RA registry were analysed. Pts in the registry were evaluated annually by a rheumatologist for disease activity and treatment, and semi-annually on multiple clinical patient-reported outcomes (PROs) and resource utilisation parameters. Pts with chest computed tomography (CT) scans performed to evaluate clinical indications for ILD and with blood samples were included in this analysis. Pts with chest CT scans that were indeterminate for ILD were excluded from the study. Pts were then divided into two mutually exclusive groups: non-ILD RA pts and RA-ILD pts. RA-ILD pts were further divided into subclinical and clinically evident ILD. Date of chest CT scan was considered the index date. The two cohorts were compared using descriptive statistics to summarise baseline differences in demographics, disease activity measures, serostatus and treatments. Kruskal–Wallis test for continuous variables and chi-square test for categorical variables were performed, with two-sided significance level of 0.05. Multivariable linear regression was used to evaluate change from baseline to 12 months in joint disease activity for pts with available data at baseline and follow-up.

Disclosure of Interests: None declared, Michael Espinola, Bindy Grewal, Laura A. Kamm, Raj Marwani, Aarti Rao, Yogesh Saini, Puneet Bhatia, Jeffrey Sparks, Aarti Rao, Yogesh Saini, Christine Iannaccone, Michael E. Weinblatt, Nancy Shadick, Christopher L. Bosworth, Bristol-Myers Squibb, Princeton, United States of America; Brigham and Women's Hospital, Boston, United States of America; Mu Sigma, Bangalore, India

Disclosure of Interests: Efi Alemao1, Tracy Doyle2, Jeffrey Sparks2, Aarti Rao2, Yogesh Saini2, Christine Iannaccone2, Michael E. Weinblatt2, Nancy Shadick2, ‘Bristol-Myers Squibb, Princeton, United States of America; Brigham and Women's Hospital, Boston, United States of America; Mu Sigma, Bangalore, India

Disclosure of Interests: Evo Alemao1, Tracy Doyle2, Jeffrey Sparks2, Aarti Rao2, Yogesh Saini2, Christine Iannaccone2, Michael E. Weinblatt2, Nancy Shadick2, ‘Bristol-Myers Squibb, Princeton, United States of America; Brigham and Women's Hospital, Boston, United States of America; Mu Sigma, Bangalore, India


Disclosure of Interests: None declared

The aim of the study was to analyze if STAT3/STAT5 expression in CD4+ T cells in peripheral blood (PB) of RA patients at baseline predicts response to Abatacept treatment (after 12 months follow-up).

Objectives: The aim of the study was to analyze if STAT3/STAT5 expression in CD4+ T cells in peripheral blood (PB) of RA patients at baseline predicts response to Abatacept treatment (after 12 months follow-up).

Methods: Early RA (ERA) and long-standing RA (LS-RA) patients with conventional DMARDs insufficient response were enrolled in this observational, multinational, investigator-initiated, non-randomized, non-profit study. Patients were treated with CTLA4-Ig in combination with methotrexate. Each enrolled RA patients underwent peripheral blood sampling and CD4+ cells isolation using magnetic micro-beads at baseline and after 6-12 months follow-up. Flow cytometric analysis (FACS) for CD4+ positive cells phenotype was performed using T-regulatory cells (Treg) as CD4+CD25+CD127- and CD4+CD25+/Foxp3+, respectively. STAT3/STAT5 gene expression on CD4+ cells was performed by RT-PCR for each enrolled patient at every time-point follow-up. Low disease activity (LDA) and disease remission (DAS) achievement were assessed at 6 and 12 months follow-up (FU), respectively.

Results: A total of 35 patients were enrolled in the study (16 ERA and 19 LS-RA, respectively). Abatacept, ERA, and LS-RA did not differ based on clinical parameters. Eight (22.9%) withdrew from the study because of treatment failure (n=6), severe infection (n=1) and death (n=1). LDA or DAS remission within twelve months follow-up were achieved in 28/34 (82.4%) and 16/34 (47.1%) patients, respectively, without any significant difference among ERA and LS-RA. There were no significant differences in the demographic and clinical characteristics of RA patients at study based on LDA or DAS remission status achievement within 12 months FU, even stratifying patients based on disease duration. FACS analysis showed CD4+/CD25+CD127- and CD4+/CD25+/Foxp3+ cells decrease during CTLA4-Ig treatment (p=0.01 and p=0.02, respectively after 12 months FU), despite disease duration. RT-PCR revealed that PB CD4+ cells of RA patients achieving LDA, but not DAS remission within 12 months FU, treated with CTLA4-Ig, had significantly lower STAT3/STAT5 expression than patients not achieving this outcome (p=0.03 and p<0.001, respectively). Moreover, baseline STAT3/STAT5 ratio in PB CD4+ cells of RA patients directly correlates with Treg cells percentages (CD4+/CD25+/CD127- cells (%): R=0.518, p=0.03; CD4+/CD25+/Foxp3+ cells (%): R=0.549, p=0.02, respectively). Finally, baseline CD4+STAT3/STAT5 expression ratio on CD4+ cells (> 0.93) obtained by ROC analysis: AUC=0.754±0.100; Specificity 75.0%, Sensitivity 75%. Specifi- cally: 80.0%) arose as baseline predictor factor of LDA achievement in RA patients treated with CTLA4-Ig [OR(95%CI): 12.0 (1.98-72.89)].

Conclusion: STAT3/STAT5 expression ratio in T cells at baseline identify RA patients better responding to CTLA4-Ig treatment that decreases Treg cells.

Disclosure of Interests: Stefano Alivernini Speakers bureau: BMS, Barbara Tolusso: None declared, Anna Laura Fedele: None declared, Clara Di Mario: None declared, Luca Petricca: None declared, Maria Rita Gigante: None declared, Gianfranco Ferraccioli: Speakers bureau: BMS, Roche, Elisa Gremese Consultant for: AbbVie, BMS, Celgene, Janssen, Lilly, MSD, Novartis, Sanofi, UCB, Roche, and Pfizer, Speakers bureau: BMS, Speakers bureau: Roche, Speakers bureau: AbbVie, BMS, Celgene, Janssen, Lilly, MSD, Novartis, Sanofi, UCB, Roche, and Pfizer, DOI: 10.1136/annrheumdis-2019-eular.5749