CHOLESTEROL SEQUESTERING IN MACROPHAGES CONTRIBUTES TO THE LIPID PARADOX IN CHRONIC ARTHRITIS

Sandra Pérez-Baena1, Junko Arakawa2, Raquel Largo-Caraza2, Katsunori Ikewaki2, Gabriel Herrero-Beaumont1, Bone and Joint Research Unit, Rheumatology Dept., ISU-Fundación Jiménez Díaz UAM, Madrid, Spain; 2Division of Anti-aging and Vascular Medicine, Internal Medicine Dept., National Defense Medical College,Tokorozawa, Japan

Background: Patients with active rheumatoid arthritis (RA) have increased cardiovascular mortality, paradoxically associated with reduced circulating lipid levels (1-3). Several disease-modifying antirheumatic drugs (DMARDs), such as the JAK inhibitor tofacitinib, ameliorate disease activity along with an increase in serum lipids (4, 5). We previously demonstrated in vitro that tofacitinib favored cholesterol efflux from macrophages through an ABCA1-dependent mechanism (6). Furthermore, tofacitinib-treated chronic arthritic rabbits showed increased circulating lipids and decreased lipid accumulation within the synovium (6).

Objectives: Our aim was to explore in vivo whether inflammation impedes cholesterol efflux from macrophages, and whether tofacitinib restores macrophage cholesterol release during chronic arthritis. For that purpose, we assessed the ability of intraperitoneally injected 3H-cholesterol labelled macrophages to efflux cholesterol to circulating lipoproteins in collagen-induced arthritis (CIA) mice treated with tofacitinib or placebo, as compared to healthy controls.

Methods: DBA/1 J mice were randomly assigned to healthy controls (Control, n = 9), CIA (CIA, n = 6) and CIA mice receiving 50 mg/kg/day tofacitinib, orally, for three consecutive days, starting on day 39 after CIA induction and coinciding with disease peak CIA+TOFA, n = 6). The day after, 3H-cholesterol labeled RAW264.7 macrophages were intraperitoneally injected into mice and tracer appearance was monitored in plasma lipoprotein subfractions, synovium, liver, bile and feces.

Results: The CIA group showed higher C-Reactive protein levels (CRP, mg/ml; Control: 10.9±5.49, CIA: 13.8±6.15, p=0.03 vs. Control) and lower circulating 3H-cholesterol levels (% of injected disintegrations per minute (dpm)/ml; Control: 1.29±0.11, CIA: 0.92±0.11, p=0.04 vs. Control). Both serum CRP and 3H-cholesterol –particularly the HDL fraction– were restored to baseline after the treatment with the JAK inhibitor (CIA+TOFA: 10.97±0.67 mg/ml and 1.37±0.20 % of injected dpm/ml, respectively, p=0.05 vs. CIA). Concomitantly, we observed an upward trend in 3H-cholesterol accumulation within the synovium of CIA animals as compared to controls, which tended to normalize with the treatment.

Conclusion: Systemic inflammation induces cholesterol sequestering within macrophages in vivo by acting on cholesterol efflux transporters (6). Tofacitinib favors cholesterol release to plasma lipoproteins, hence increasing circulating cholesterol. This is not only due to a decrease in inflammation –an effect very likely shared with some other biologic DMARDs–, but also to a direct mechanism on ABCA1 transporters that favors cholesterol efflux. To our knowledge, this is the first report suggesting that cholesterol efflux transporters are crucial for controlling cholesteremia in response to systemic inflammation in vivo.

REFERENCES


Disclosure of Interests: None declared


SAT0062 STRATIFIED MEDICINE FOR RHEUMATOID ARTHRITIS: PREDICTING RESPONSE TO BIOLOGIC THERAPY USING IMMUNE CELL SIGNATURES

Gemma Radley1, Ben Mullheim2, Laura Donlin3, Jennifer H. Anolik4, Michael Brenner5, Soumya Raychaudhuri5, Kimmie Hyrich5, Ann Morgan6, Perry W. Wilson7, John Isaacs8, Tracy Hussell8, Anne Barton9, Sebastien Viatte9,10

1University of Manchester, Arthritis Research UK Centre for Genetics and Genomics, Manchester, United Kingdom; 2University of Manchester, Manchester Collaborative Centre for Inflammation Research, Manchester, United Kingdom; 3Well Cornell Medical College, Department of Medicine, New York, NY, United States of America; 4University of Rochester, Department of Medicine, Rochester, NY, United States of America; 5Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America; 6University of Manchester, Arthritis Research UK Centre for Epidemiology, Manchester, United Kingdom; 7Chapel Allerton Hospital, NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds, United Kingdom; 8University College Dublin, Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland; 9Newcastle-upon-Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle-upon-Tyne, United Kingdom

Background: Treatment selection of biologic therapy for patients with rheumatoid arthritis (RA) is currently a trial and error process, with approximately 40% failing to respond well to the first biologic. The lack of biomarkers to predict treatment response leads to further pain, joint damage, patient anxiety and is cost ineffective for those who are non-responders.

Objectives: We aim to identify immune signatures from a pre-treatment blood test to inform the choice of treatment strategies for stratified medicine.

Methods: RA patients with active disease (DAS28 > 5.1) who failed to respond to conventional DMARDs and were due to commence biologic treatment were included in the BRAGGSS cohort. Peripheral blood mononuclear cells (PBMCs) taken before the initiation of biologic treatment were available for 300 patients (good (60%), moderate (25%), and non-

rsb10061 IMPORTANT ROLE OF CD11C+ CELLS IN INFLAMMATORY ARTHRITIS

Antonia Puchner1, Elisabeth Simader1, Victoria Saferding2, Gerhard Krönke2, Rene Pfeifle3, Daniel Aletaha4, Josef S. Smolen1, Stephan Blüml1,2

1 Medical University Vienna, Internal Medicine III, Vienna, Austria, 2Medical University Erlangen, Erlangen, Germany

Background: Dendritic cells (DCs) are important antigen presenting cells (APCs) and therefore they play an important role in bridging the innate and the adaptive immune response. DCs can be divided in different sub-sets with specific functions. As powerful APCs, DCs are thought to play an important role in the induction of autoimmune diseases such as rheumatoid arthritis. However, the active role of DCs in joint inflammation is not known yet.

Objectives: Investigation of the role of DCs cells in joint inflammation and destruction.

Methods: We analyzed histological sections of K/BxN serum transfer arthritis as well as HtNfg arthritis for the presence of CD11c+ cells by immunohistochemistry. We used CD11c-diphtheria toxin receptor (DTR) transgenic mice. K/BxN serum transfer arthritis was induced, and mice were given either DT or PBS or in vitro DB2 or BARF3 cells. In addition CD11c DTR mice were crossed into HtNfg animals and also received either DT or PBS. The severity of arthritis was determined clinically and histologically.

Results: Both CD8+CD11c+ and CD11b+CD11c+ can be found in synovial tissue in TNF driven arthritis. Upon depletion of CD11c+ cells clinical signs of K/BxN serum transfer arthritis were significantly reduced. Histological analysis found reduced synovial inflammation after the depletion of CD11c+ cells in K/BxN arthritis. In addition, local bone destruction and the number of osteoclasts was also significantly reduced. In addition to K/BxN arthritis, we found that also in TNF-driven arthritis depletion of CD11c+ cells led to a striking reduction of synovial inflammation and a complete depletion of osteoclasts.

Conclusion: These data show that in addition to initiating an adaptive immune response, CD11c+ dendritic cells, are also involved in innate effector mechanisms of inflammatory arthritis. Especially CD11b+CD11c+ and monocyte derived inflammatory seem to play a role in inflammatory arthritis, suggesting that they could be an important therapeutic target.

Disclosure of Interests: Antonia Puchner: None declared, Elisabeth Simader: None declared, Victoria Saferding: None declared, Gerhard Krönke Grant/research support from: Lilly, Pfizer, Francis shades: Novar- tis, Rene Pfeifle: None declared, Daniel Aletaha Grant/research support from: AbbVie, Bristol-Myers Squibb, and MSD, Consultant for: AbbVie, Bristol-Myers Squibb, Eli Lilly, Janssens, Medac, Merck, MSD, Pfizer Inc, Roche, and UCB. Speakers bureau: AbbVie, Bristol-Myers Squibb, Eli Lilly, Janssens, Medac, Merck, MSD, Pfizer Inc, Roche, and UCB. Josef Smolen: Grant/research support from: Lilly, Eli Lilly, Gla со Group, ILTOO, Janssen, Medimmune, MSD, Novartis, Pfizer, Roche, Samson, Sanoì, UDB, Speakers bureau: AbbVie, BMS, UCB, Genta, Genentech, GlaxoSmithKline, Lilly, MedImmune, MSD, Novartis, Pfizer, Roche, Samson, Sanoì, UDB, Stephan Blüml: None declared