
Disclosure of Interests: Madeleine Jenning; None declared, Bianka Marklein; None declared, Ute Nonhoff; None declared, Zoltan Konthur; None declared, Gerd Rüdiger Burmester Consultant for: Roche, Sanofi-Genzyme, Speakers bureau: Roche, Sanofi-Genzyme, Karl Skriner: None declared DOI: 10.1136/annrheumdis-2019-eular.4653

INFECTION WITH CITRULLINATING PORPHYROMonas GINGIVALIS CAN INDUCE AUTOIMMUNITY TO HUMAN RIBOSOMAL PROTEINS AND T NF-αP ATA TREATMENT NONRESPONSE

Madeleine Jenning1, Bianka Marklein1, Ute Nonhoff2, Zoltan Konthur2, Gerd Rüdiger Burmester1. 1Charité University Medicine, Department of Rheumatology, Berlin, Germany; 2Max Planck Institute, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam, Germany

Background: Porphyromonas gingivalis (P.g.) is involved in triggering self-reactive immune responses when cirtullinating bacterial or human proteins. However, first evidence to link anti-ribosomal T and B cells responses to rheumatoid arthritis (RA) has been published but the mechanism and its influence on therapy is not clear (1). Infection based autoimmunity induced by citrullination of human proteins with P.g. peptidyl arginine deiminase induced from RA patients (RA-PPAD) and crossreactivity binding induced by P.g. was investigated using patient sera, affinity purified RA patient antibodies and monoclonal antibodies to cit-RA-PPAD.

Objectives: Antibodies to RA-PPAD isolated from an RA patients (RA-PPAD) was first time linked to target specific citrullinated ribosomal proteins and therapy.

Methods: Screening of RA sera was conducted on 37.830 unique human proteins on protein microarrays (http://www.engine-gmbh.de) with 30 RA sera. The autoantibody response to 840 different proteins was recorded and bioinformatically evaluated. Protein arrays were citrullinated with human peptidyl arginine deiminase PAD 2, 4, rabbit PAD and RA-PPAD from P.g. Sera and affinity purified antibodies were used to detect reactivity to 840 autoantigens and 15aa CCP peptide form RA-PPAD. Sera from TBA treated sera anti-TNF (adalimumab, etanercept, certolizumab) treatment were tested with the cit-RA-PPAD-pedipate of 15aa (CPP).

Results: A human protein microarray consisting of 840 identified autoantigens from RA patients was modified by human PAD2 and PAD4, rabbit P AD, and RA-PPAD form P.g. Using cit specific monoclonal antibodies we identified the ribosomal proteins (RP), RPL18a, RPS27a, modified by PAD2, RPL18a and MRPS11 modifies by PAD4, and RPL7L1 modified by rabbit PAD specifically targeted. In addition 6 RA patient sera and 3 collagen arthritis (OA) control sera were used to identify the citrullinated RA-PPAD specific modified autoantigens not targeted when modified by human PAD2 or PAD4 or rabbit PAD. We identified the RA-PPAD citrullinated ribosomal Proteins RPL3, RPL21, RPS24, RPL9, RPL15, RPS24, RPS3a, MRPL28 specifically targeted by RA patients. This identifies ribosomal proteins as major specific RA-PPAD citrullination targets. Moreover, affinity purified antibodies bound to native and citrullinated RA-PPAD from 6 RA patient sera and 3 OA patient sera were tested for crossreactivity on citrullinated human proteinarray. Antibodies to citrullinated ribosomal proteins MRPS11, RPL21, RPS3a, RPL18a, RPS27a, MRPL28 were detected in the RA group but not in the OA control group. High antibody titre against the cit-PPAD-peptide of 15aa (CPP) derived from the autocitrullination site (R63) of RA-PPAD correlates with TNFα-inhibitor (TBA) non-response (n=61). DMARD patients refractory to different treatment regimes (n=61), receiving anti-TNF (adalimumab, etanercept, certolizumab), do not respond when maintaining high α-CPP IgG level.

Conclusion: Failure of Porphyromonas gingivalis clearance in RA patients leads to infection induced enzymatic mimicry based autoreactivity targeting evolutionary conserved human ribosomal proteins. Autoimmunity to ubiquitous self-antigens may trigger localized tissue damage in RA.TBA non-response leads to the suggestion to clear Porphyromonas gingivalis infection before α-TNF treatment.

REFERENCES

SAT0051 BARI CITINIB IMPROVES JOINT MOBILITY AFTER INJURY IN A RODENT FORCED-AMBULATION MODEL

Kelly Knopp, Akihiko Kato, Theron Wall, Jeff S. McDermott, Eric S. Nissenbaum, Benjamin Adams, Michael Johnson, Eli Lilly and Company, Indianapolis, United States of America

Background: Movement-evoked pain and impaired joint mobility are common comorbidities in inflammatory diseases such as Rheumatoid Arthritis (RA) and osteoarthritis. The Janus kinase (JAK) pathway has been implicated in both inflammation and chronic pain. Clinical data suggests that baricitinib, a selective JAK 1/2 inhibitor, can robustly and rapidly alleviate pain in RA [1], however, the mechanism of action of baricitinib in joint pain remains unknown. Here we investigate the potential mechanism of action of baricitinib in joint pain.

Methods: Unilateral joint injury was induced in female Sprague Dawley rats (Harlan, Indianapolis, IN, USA) by unilateral intra-articular injection of 20 μg Complete Freund’s Adjuvant (CFA). Using the GaitScan (CleverSys Inc., Reston, VA) treadmill system, a composite gait score comprising of pain in the ipsilateral (right) and contralateral (left) sides. Total STAT3 protein levels remained unchanged. Similarly, treatment with baricitinib significantly improved composite gait score at the 10 mg/kg dose (p<0.05) by Day 3.

Results: In rat DRG homogenates, baricitinib significantly decreased phospho-STAT3 (Y705) protein levels in a dose-dependent manner (p<0.01) with a significant effect after a 3 mg/kg dose and a maximal response after a 10 mg/kg in both the ipsilateral (right) and contralateral (left) sides. Total STAT3 protein levels remained unchanged. Similarly, treatment with baricitinib significantly improved composite gait score at the 10 mg/kg dose (p<0.05) by Day 3.

Conclusion: These data indicate that treatment with baricitinib attenuates CFA-induced joint deficits, a surrogate measure of joint pain. This effect correlated with the pharmacodynamic inhibition of JAK-STAT signaling in DRGs. These data support a role for JAK-STAT signaling in pain signaling and provide an opportunity to investigate the potential mechanism of action of baricitinib in joint pain.

Acknowledgement: This research was supported by the Basic Research Program through the National Research Foundation of Korea (NRF) funded by the MSIP (2014R1A1A1048577)

Disclosure of Interests: None declared


SAT0052 PHOTODYNAMIC THERAPY TARGETING ACTIVATED FIBROBLASTS INDUCES SYNOVIAL CELL DEATH IN EXPERIMENTAL ARTHRITIS

Daphne Dorst1, Mark Rijkema1, Mijke Buitinga2, Peter Laveerman1, Marti Boss1, Christian Klein1, Anne Freimoser-Grundschober1, Birgitta Walgreen1, Peter van der Kraan1, Martin Gotthard1, Marie Koendes2,2, Radboudumc, Nijmegen, Netherlands; 2KULeuven, Leuven, Belgium; 3Roche Pharmaceutical Research and Early Development, Innovation Center Zurich, Schierne, Switzerland; 4Radboudumc, Nijmegen, Netherlands

Background: Activated synovial fibroblasts (SF) contribute to rheumatoid arthritis (RA) by producing a multitude of cytokines, chemokines and proteases thus aggravating disease. Activated SF can be distinguished from quiescent fibroblasts by their expression of fibroblast activation protein (FAP). Selective depletion of FAP+ SF in inflamed joints could decrease their contribution to the arthritis process and thus constitute a viable treatment option. Further focussing of the treatment to only those areas affected by the disease can be accomplished by applying targeted photodynamic therapy (IPDT). In IPDT a light sensitive molecule, a photosensitizer (PS), is conjugated to a targeting moiety. Upon activation by light this construct produces reactive oxygen species, killing the targeted cells.

Methods: We have previously provided examples of software-detected paw prints for each treatment group which show that CFA + vehicle treatment produced a small, closed-toed paw print (Middle) which appears restored to near baseline levels following baricitinib treatment (Bottom).

![Figure 1. Representative still images from video recordings of animals during gait analysis at baseline (Top Panel), 3 Days post-CFA and vehicle treatment (Middle Panel) and 3 Days post-CFA with 10 mg/kg daily baricitinib treatment (Bottom panel). The ventral image of the rat illustrates the same part of the gait cycle (ipsilateral stance phase initiation) across treatment groups to highlight impairment in the CFA-injected limb (Red Box) vs Baseline and apparent improvement following 10 mg/kg baricitinib treatment. The panels on the left provide examples of software-detected paw prints for each treatment group which show that CFA + vehicle treatment produced a small, closed-toed paw print (Middle) which appears restored to near baseline levels following baricitinib treatment (Bottom).]

References

