to a healthy control group (7.6% versus 5.85%, p = 0.129). After a 12-week treatment with alfalcacidol in patients with RA, an increase in the percentage of activated Treg cells (HLA-DR + relative to total T-reg lymphocytes) was observed in relation to the values detected at the beginning of the study, up to the level recorded in the group of healthy controls 6.13% vs. 4.76%, p = 0.219.

Conclusion: It is believed that functional blockade of Treg cells plays the most important role in RA immunopathogenesis, most likely due to inhibition of their function by proinflammatory cytokines, due to an increase in the number of activated effector T cells, or perhaps due to the fact that some completely differentiated T reg cells can be very unstable. Our results are in favor of the potential immunomodulatory effect of alfalcacidol in autoimmune Th1/Th17-mediated diseases.

Disclosure of Interests: Tatjana Radnic: None declared, Katarina Pasalic: None declared, Mirjana Selik Bakulicina: None declared, Ivanka Markovic: None declared, Nemanja Damjanov Grant/research support from: AbbVie, Pfizer and Roche, Consultant for: Abbvie, Gedeon Richter, Merck, Novartis, Pfizer and Roche., Speakers bureau: Abbvie, Gedeon Richter, Merck, Novartis, Pfizer and Roche., Jelena Vojinovic: None declared


SAT0029

THE IMMUNE-PATHOGENIC CHARACTERISTICS OF AUTOACTIVE B CELLS AGAINST CITRULLINATED ANTIGENS IN RHEUMATOID ARTHRITIS

Hendy Kristyanto1, Ellen van der Voort1, Priscilla Kerckman2, Leonie Burgers1, Robin Ten Brinck1, Annette van der Helm - van Mil1, Dominique Baeten2,3,4,5

Thomas Huizinga1, Rene Toes1, Hans Ulrich Scherer2

1Leiden University Medical Center, Department of Rheumatology, Leiden, Netherlands; 2University Medical Center Utrecht, Department of Medical Microbiology, Utrecht, Netherlands; 3Academic Medical Centre, Department of Clinical Immunology and Rheumatology, Amsterdam, Netherlands; 4UCPH Pharma, Brussels, Belgium

Background: Autoactive B cells are critical mediators of autoimmune pathology. At present, little is known about the functional and phenotypic characteristics of these cells in human autoimmune disease. Rheumatoid arthritis (RA), a common autoimmune disease, is characterized by the presence of disease-specific anti-citrullinated protein antibodies (ACPA). Different lines of evidence indicate that CD20+ B cells, and in particular the citrullinated antigen-specific, ACPA-expressing subset, are critically involved in disease pathogenesis.

Objectives: To delineate the molecular make-up of ACPA-expressing B cells and to define their pathogenic effector functions.

Methods: Protective tetanus toxoid (TT)-specific and autoactive ACPA-expressing B cells were identified and analyzed directly ex-vivo from individual RA patients and from ACPA-positive individuals at-risk for developing disease. Both antigen-specific cell populations were enumerated and phenotypically characterized by flow cytometry. In addition, ACPA-expressing B cells were isolated and functionally analyzed in B cell culture systems.

Results: In contrast to TT-specific B cells from the same patients, ACPA-expressing B cells were larger in size and strongly expressed CD19, HLA-DR, CD38, CD6 and the proliferation marker Ki-67, while down-regulating CD32. This activated phenotype was less pronounced in ACPA-antigen reactive but not autoreactive, supporting the hypothesis of a bacterial origin for this ACPA response.

Conclusion: Our findings provide first evidence that ACPA-expressing B cells are well equipped to activate T cells, actively differentiate into IL-8 producing plasmablasts and, hence, could attract neutrophils to the rheumatoid joint. These findings define important phenotypic and functional characteristics of autoactive B cells in a prototypic human autoimmune disease. They point to a direct pathogenic role of ACPA-expressing B cells in the inflammatory disease process underlying RA and favours approaches that aim at their antigen-specific depletion.

Disclosure of Interests: Hendy Kristyanto: None declared, Ellen van der Voort: None declared, Priscilla Kerckman: None declared, Leonie Burgers: None declared, Robin Ten Brinck: None declared, Annette van der Helm - van Mil Grant/research support from: The research leading to these results has received funding from the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation programme (Starting grant, agreement No 714312) and from the Dutch Arthritis Foundation. The funding source had no role in the design and conduct of the study., Dominique Baeten Employee of: UCB Pharma, Thomas Huizinga Consultant for: Merck, UCB, Bristol Myers Squibb, Biostar AG, Pfizer, GSK, Novartis, Roche, Sanofi-Aventis, Abbott, Crescendo Bioscience Inc., Nycomed, Boeringher, Takeda, Zydus, Epiris, Eli Lilly, Rene Toes Grant/research support from: Sanofi, Hans Ulrich Scherer Grant/research support from: Sanofi, BMS


SAT0030

CITRULLINE-REACTIVE B CELLS ARE PRESENT IN INFILATED GINGIVAL TISSUE AND DISPLAY CROSS-REACTIVITY BETWEEN BACTERIAL AND HUMAN ANTIGENS

Natalia Shering1, Vijay Joshua1, Radha Thyagarajan1, Natalie Sippl1, Lena Israelsson1, Heidi Wähämäa1, Ragnhild Stålesen1, Kaia Eriksson1, Tülay Yucel-Lindberg2, Aase Hensvold1, Caroline Grönwall1, Anca Catrina1, Vivianne Malmström1, Antonio Lanzavecchia3, Luca Piccol1, Khaled Amara1, Karin Lundberg1, Karolinska Institute, Department of Medicine, Stockholm, Sweden; 2Karolinska Institutet, Department of Dental Medicine, Stockholm, Sweden; 3Universita della Svizzera Italiana, Institute for Research in Biomedicine, Bellinzona, Switzerland

Background: Antibodies targeting citrullinated proteins (ACPA) are highly specific for rheumatoid arthritis (RA). However, the etiology and molecular basis for ACPA production is still unclear. Based on an epidemiological association between RA and periodontitis (PD), and the unique ability of the oral pathogen Porphyromonas gingivalis (Pg) to express a PAD enzyme that can citrullinate both bacterial and human proteins, it has been hypothesised that the ACPA response may be triggered in the gum mucosa in response to Pg.

Objectives: The main purpose of this study was to investigate if citrulline-reactive B cells reside in inflamed gingival tissue, and to examine ACPA cross-reactivity between citrullinated bacterial and human epitopes on a monoclonal level.

Methods: Using a single-cell antibody cloning approach, 55 recombinant monoclonal antibodies (mAbs) were generated from gingival tissue (GT) CD19+ B cells (n=1 ACPA+ RA/PD patient). Citrulline reactivity was determined using the anti-CCP2 kit (EuroDiagnostica AB), and in-house peptide ELISAs (including a citrullinated peptide derived from Pg PAD) and citrullinated peptides derived from human α-encephalin, fibromin, vimentin, filaggrin and histone 4). Reactivity against CCP2 and CPP3 was also investigated in: 19 mAbs from bronchoalveolar lavage (BAL) CD19+ B cells (n=2 ACPA+ RA patients); 29 mAbs from bone marrow (BM) plasma cells (n=4 ACPA+ RA patients); 142 mAbs from synovial fluid (SF) plasma cells (n=5 ACPA+ RA patients); and 36 mAbs from peripheral blood memory/plasma cells (n=4 ACPA+ RA patients).

Results: Among 55 GT mAbs, 14 unique clones (25%) were reactive to the bacterial CCP3 peptide. We also detected CCP3-reactive mAbs from BAL (n=9/19), BM (n=3/29), SF (n=1/142) and peripheral blood (n=1/36).

Interestingly, 11 out of 28 (39%) CCP3-reactive clones also bound citrullinated peptides derived from human proteins. Notably, three of these clones were positive in the clinical anti-CCP2 test, and when converted back to the predicted germline sequence, these clones became CCP2 negative, while maintaining reactivity against the bacterial CCP3 peptide.

Conclusion: Our data show that B cells reactive with a citrullinated peptide derived from Pg PAD are present in gingival tissue, lungs, bone marrow, blood and the inflamed joint of ACPA+ RA patients. Moreover, the finding that a number of these clones are cross-reactive with citrullinated peptides derived from human proteins as well as the gold standard CCP2 test suggests mechanisms of molecular mimicry in the generation of ACPA. Importantly, the germline versions of these ACPA were Pgp-reactive but not autoactive, supporting the hypothesis of a bacterial origin for this ACPA response.

Disclosure of Interests: Natalia Shering: None declared, Vijay Joshua: None declared, Radha Thyagarajan: None declared, Natalie Sippl: None declared, Lena Israelsson: None declared, Heidi Wähämäa: None declared, Ragnhild Stålesen: None declared, Kaia Eriksson: None declared, Tülay Yucel-Lindberg: None declared, Aase Hensvold: None declared, Caroline Grönwall: None declared, Anca Catrina: None declared, Vivianne Malmström: None declared, Antonio Lanzavecchia: None declared, Luca Piccol: None declared, Khaled Amara: None declared, Karin Lundberg: None declared