DETECTION OF CIRCULATING PR3-SPECIFIC B CELLS IN PATIENTS WITH ACTIVE ANCA-ASSOCIATED VASCULITIS

Divi Concec1, Alivse Berti2, Amber Hummel2, Eva Carmona2, Tobias Peikert2, Carol Langford3, Paul Monach3, Peter Merkel5, Philip Seo5, Robert Spera6, E. William St Clair7, Fernando Fervenza7, Kristina Harris7, John H. Stone7, Jacques-Olivier Pers1, Peter Heeringa7, Wayel Abdulla7, Ulrich Specks2.

1University of Brest, Brest, France; 2Mayo Clinic, Rochester Minnesota, United States of America; 3Cleveland Clinic, Cleveland, United States of America; 4Brigham and Women’s Hospital, Boston, United States of America; 5University of Pennsylvania, Philadelphia, United States of America; 6Johns Hopkins Hospital, Baltimore, United States of America; 7Hospital for Special Surgery, New-York, United States of America; 8Duke Medical Center, Durham, United States of America; 9Immune Tolerance Network, Bethesda, United States of America; 10Massachusetts General Hospital, Boston, United States of America; 11University Medical Center, Groningen, Netherlands

Background: We recently reported that, in a small number of subjects, the proportion of proteinase 3 (PR3)-specific B cells was higher in patients with PR3-ANCA-associated vasculitis (AAV) compared to healthy controls.

Objectives: The objectives of this work were to replicate our previous findings on a larger number of subjects, including myeloperoxidase (MPO)-AAV patients as disease controls, and to study the association of PR3-specific B cell proportions with clinical and biological features in patients with PR3-AAA.

Methods: We analyzed frozen PBMCs from 166 patients who participated in the RAVE trial, including 113 patients with PR3-AAV and 53 patients with MPO-AAV, as well as 27 HCs. We measured the proportion of PR3-specific B cells and subsets among PBMCs using a multi-color flow cytometry panel including CD19, IgD, CD27, CD38, CD24, and a biotinylated PR3 revealed by fluorescent streptavidin. In parallel, one million PBMCs from each sample were cultivated in vitro for 12 days and stimulated by CpG, BAFF, and IL-21. PR3-ANCA were quantified in the culture supernatants and in the serum.

Results: The mean (SD) proportion of PR3-specific B cells was higher in patients with PR3-AAV compared to patients with MPO-AAV and to HCs: 2.78% (2.64) vs 1.97% (1.2) vs 1.24% (0.49) respectively, p<0.001 for each comparison. We observed a shift towards a more mature phenotype of these PR3-specific B cells in patients with PR3-AAV compared to MPO-AAV and HCs, as represented by a higher proportion of PR3-specific B cells among the switched memory (IgD neg, CD27 pos) B-cell subset, respectively 2.20% (1.99) vs 1.3% (0.72) vs 0.71% (0.40), p<0.001. In patients with PR3-ANCA, we did not observe any associations between PR3-specific B cell proportion and age, sex, new diagnosis vs relapsing disease, or disease activity (BVAS/WG). Serum PR3-ANCA levels (r=0.20, p=0.04), but not with in-vitro PR3-ANCA secretion. The ratio of PR3-specific B cells in the switched memory/naive B cell subsets showed a low correlation with serum PR3-ANCA levels (r=0.44, p<0.001). The ratio of PR3-specific B cells in the switched memory/naive B cell subsets showed a low correlation with serum PR3-ANCA levels (r=0.44, p<0.001). The ratio of PR3-specific B cells in the switched memory/naive B cell subsets showed a low correlation with serum PR3-ANCA levels (r=0.44, p<0.001). The ratio of PR3-specific B cells in the switched memory/naive B cell subsets showed a low correlation with serum PR3-ANCA levels (r=0.44, p<0.001). The ratio of PR3-specific B cells in the switched memory/naive B cell subsets showed a low correlation with serum PR3-ANCA levels (r=0.44, p<0.001).

Conclusion: In AID, the absolute numbers of CD4+CD25+Foxp3+Treg cell levels were decreased, which may be one of the important mechanisms of disease. Treatment promoting CD4+CD25+Foxp3+Treg cell function may become a new strategy for AID therapy.

REFERENCES


Changes and significance of CD4+CD25+Foxp3+ Treg cells in the peripheral blood of patients with autoimmune diseases

Yanan Duan1, Hong-Yan Wen1, Yang Liu2, Sheng-Xiao Zhang3, Ming Yan1, Li Xiao-Feng4, Chong Gao5, Shanxi Medical University, the Second Hospital of Shanxi Medical University, Shannxi, China; 2Shanxi Academy of Medical Sciences, Shanxi DAVH Hospital, Shannxi, China; 3Brigham and Women’s Hospital, Harvard Medical School, Boston, Armenia

Background: In recent years, studies have found that the maintenance of immune tolerance of Treg cells plays a pivotal role in the occurrence and development of AID, and that the mutual regulation and dynamic equilibrium between Treg cell and other T lymphocyte plays a significant role in maintaining the immune hemostasis within the body. Therefore, the present research proposes to explore the status of the absolute numbers of Treg cells and their correlation with disease activity using a large sample.

Objectives: To determine CD4+CD25+Foxp3+Treg cell levels in peripheral blood (PB) of patients with autoimmune diseases (AID) and age- and sex-matched healthy controls, and to explore the correlation between the levels of peripheral Treg cells and clinical parameters in AID.

Methods: A total of 1561 AID patients, and 196 age- and sex-matched healthy controls were enrolled. The absolute numbers of CD4+CD25+Foxp3+Treg and other T subsets [total T, CD4+, CD8+, T helper 1 (Th1), T helper 2 (Th2), and T helper 17 (Th17)] in PB were measured by Flow Cytometer (FCM). Erythrocyte sedimentation rate (ESR) was analyzed by the Westergen method. Serum concentrations of C-reactive protein (CRP) were measured by monoclonal immunoassay.

Results: (1) The absolute numbers of Treg cells in PB of patients with AID [22.90 (18.31, 36.47)] were significantly lower than those of healthy controls [30.24 (21.85, 41.34); p<0.05], which was also seen in rheumatoid arthritis (RA), Sjogren’s syndrome (SS), systemic lupus erythematosus (SLE), systemic vasculitis (SV), idiopathic inflammatory myopathy (IM) and other diseases. The levels of CD4+, Th1/Treg, and Th2/Treg in PB of AID patients were higher than those of healthy controls. (2) The absolute numbers of most T cell subsets in PB of most AIDs were lower than those of healthy controls, but the Treg cells were greatly decreased, which was consistent with the levels of Treg by other T cells. (3) The levels of inflammatory indicators were inversely associated with numbers of Tregs, total T, CD4+, CD8+, Th1 and Th1/Treg cells.

Conclusion: In AID, the absolute numbers or function of CD4+CD25+Foxp3+Treg cells were decreased, so it cannot effectively maintain immune tolerance or inhibit inflammatory response, which may be one of the important mechanisms of disease. Treatment promoting CD4+CD25+Foxp3+Treg cell function may become a new strategy for AID therapy.

REFERENCES

Acknowledgement: Thanks for my teachers, classmates, and my family.

Disclosure of Interests: None declared.