THE CLINICAL IMPLICATION OF NASAL BIOPSY FOR CLASSIFYING GRANULOMATOSIS WITH POLYANGIITIS IN PATIENTS WITH RHINOSINUSITIS: A SINGLE CENTRE RETROSPECTIVE STUDY

Juyouna Yoo, Sungsoo Ahn, Seungmin Jung, Jason Jungsk Song, Yongbeom Park, Sangwon Lee. Yonsei university college of medicine, Internal medicine, Seoul, Korea, Rep. of (South Korea)

Background: Granulomatosis with polyangiitis(GPA) mainly involves the upper and lower respiratory tracts and kidneys and induces necrotising vasculitis and granuloma. Nasal biopsy has been recommended in GPA-suspected patients to not only completely cure chronic rhinosinusitis, but also clearly discriminate its aetiologies.

Objectives: We investigated whether the classification of GPA could be made without nasal biopsy in immunosuppressant drug-naive 45 patients with chronic rhinosinusitis who had previously been classified as GPA.

Methods: We retrospectively reviewed the medical records of 45 patients with GPA. Twenty-six patients exhibited chronic rhinosinusitis, among which 16 patients underwent nasal biopsy (10 with granuloma and 6 without granuloma). We applied the 2007 European Medicines Agency algorithm for the classification of GPA, the 2012 Chapel Hill Consensus Conferences Nomenclature of Vasculitis and the 2017 American College of Rheumatology/European League Against Rheumatism provisional classification criteria for GPA to them for reclassifying GPA. (Figure1)

Results: The mean age was 58.4 years and 17 patients were men. There were no differences in clinical and laboratory results between those with and without granuloma. Among 6 patients without granuloma on nasal biopsy, 3 patients with only ANCAs and chronic rhinosinusitis could be classified as GPA due to PR3-ANCA (or C-ANCA) positivity. Among 9 patients without nasal biopsy, 3 patients with only chronic rhinosinusitis could be classified as GPA due to GPA-specific lung lesions and cartilaginous involvement. (Table 1) When we excluded an item of granuloma in 10 GPA patients with granuloma on nasal biopsy, 4 patients without ANGAs could be classified as GPA due to GPA-specific lung lesions and cartilaginous involvement. (Table 2)

Conclusion: Nasal biopsy is necessary and useful for classifying GPA. However, nasal biopsy could be replaced with PR3-ANCA (or C-ANCA) positivity, GPA-specific lung lesions and cartilaginous involvement in GPA suspected patients with chronic rhinosinusitis.

REFERENCES:

FR0652 SERUM CXCL13 LEVELS ARE ASSOCIATED WITH LYMPHOMA RISK AND LYMPHOMA OCCURRENCE IN PRIMARY SJÖGREN’S SYNDROME

Emmanuella Traipap1, James Locke1, Dennis Lendrem1, Simon J. Bowman2, Ben Hargreaves3, Victoria Macrae3, Jessica Tam1, Wan Fai Ng2,3. UK primary Sjögren’s syndrome registry study group. 1Newcastle University, Institute of Cellular Medicine, Newcastle upon Tyne, United Kingdom; 2University Hospitals Birmingham, Birmingham, United Kingdom; 3NIHR Newcastle Biomedical Research Center, Newcastle upon Tyne, United Kingdom

Background: Primary Sjögren’s syndrome (pSS) is an autoimmune disease characterized by an increased risk for non-Hodgkin lymphoma (NHL) development. Ectopic germinal center (GC) formation in the salivary gland (SG) epithelium of pSS patients is thought to be associated with high risk for pSS-associated NHL. The chemokine (C-X-C motif) ligand 13 (CXCL13) is a major chemoattractant for B cell migration into the GC, plays an important role in the organization of B cell follicles, and enhances BCR-triggered B cell activation. The increased B cell activation within ectopic GC may lead to excessive B cell proliferation and along with genetic abnormalities may drive the transition from the early clusters of GC B cells through oligoclonal and later monoclonal B cell expansion to lymphoma.

Objectives: To investigate the potential of CXCL13 as a biomarker to assess NHL risk in pSS.

Methods: Serum CXCL13 concentrations were quantified by ELISA in 48 healthy individuals, 165 pSS patients without NHL and 38 pSS patients with NHL from the United Kingdom Primary Sjögren’s Syndrome Registry (UKPSSR). Among these patients, follow-up serum samples from 83 and 11 patients without and with NHL respectively were available and CXCL13 measured. PSS patients without NHL were stratified into low risk (LR), moderate risk (MR) and high risk (HR) groups according to the lymphoma risk assessment tool proposed by Fragkoudaki et al. 2016. Differences in CXCL13 levels among risk groups were analyzed using the Mann-Whitney test and differences in CXCL13 levels between initial (visit 1) and follow-up (visit 2) samples were measured by repeated measures MANOVA. Associations of CXCL13 with B cell markers were determined by Pearson correlation. Logistic regression analyses were performed to model the NHL risk against CXCL13 concentrations.

Results: At visit 1, there were 24 LR, 58 MR and 1 HR pSS patients. Because of the small sample size of the HR “group”, it was excluded from further analyses. Serum CXCL13 levels were higher in all pSS groups compared to healthy controls (p < 0.0001), and the levels in patients with a history of NHL were higher compared to those without (p = 0.0311). Visit 1 LR patients had significantly lower CXCL13 levels than MR patients (p = 0.0015) and pSS patients with NHL (p = 0.0017). Serum CXCL13 levels remained stable between visit 1 and visit 2 (mean time between visits = 4 years) for all pSS groups. CXCL13 was associated with B cell markers, including Immunoglobulin G (IgG) (p = 0.0014), B-cell activating factor (p < 0.0001), beta-2 microglobulin (p < 0.0001), combined free light chains (p = 0.0001), kappa light chain (p < 0.0001), lambda light chain (p = 0.0002), kappa/lambda ratio (p = 0.0013), and Anti-SSA/Ro autoantibodies (p = 0.0005). Finally, serum CXCL13 levels, age, IgM, IgA, and white blood cell count were independent predictors of NHL risk score in pSS.

Conclusion: Our findings have demonstrated that serum CXCL13 levels were elevated in pSS patients with NHL and MR pSS patients compared to LR pSS patients and remained stable between visit 1 and visit 2. CXCL13 was an independent determinant of NHL risk score and could potentially be used as an additional NHL risk biomarker in pSS.

Acknowledgement: None
Disclosure of Interests: None declared

Epidemiology, risk factors for disease or disease progression