REFERENCE:

Acknowledgement: Professional medical writing: Stacey Reebier, PhD, Caudex; funding: Bristol-Myers Squibb

Disclosure of Interests: Nicolino Rupertano Grant/research support from: The Gaslini Hospital, where NR works as a full-time public employee, has received contributions (> 10,000 USD each) from the following industries in the last 3 years: BMS, Eli-Lilly, GlaxoSmithKline. F Hoffmann-La Roche, Janssen, Novartis, Pfizer, Sobi. This funding has been reinvested for the research activities of the hospital in a fully independent manner, without any commitment with third parties,. Consultant for: Received honoraria for consultancies or speaker bureaus (< 10,000 USD each) from the following pharmaceutical companies in the past 3 years: Ablynx, AbbVie, AstraZeneca-Medimmune, Biogen, Boehringer, Bristol-Myers Squibb, Eli-Lilly, EMRO Serono, GlaxoSmithKline, Hofmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, SanofiServier, Sinergie, Sobi and Takeda,. Speakers bureau: Received honoraria for consultancies or speaker bureaus (< 10,000 USD each) from the following pharmaceutical companies in the past 3 years: Ablynx, AbbVie, AstraZeneca-Medimmune, Biogen, Boehringer, Bristol-Myers Squibb, Eli-Lilly, EMRO Serono, GlaxoSmithKline, Hofmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, SanofiServier, Sinergie, Sobi and Takeda,. Hermine Brunner Consultant for: Bristol-Myers Squibb, Pfizer, Consultant for: Pfizer- Bristol-Myers Squibb, Janssen, Novartis, Lilly, Roche, GlaxoSmithKline, Sanofi, Speakers bureau: Novartis, Roche, Nikolay Tzanbacchev: None declared, Ingrid Low Louw Consultant for: Advisory committee: Novartis, Pfizer, Inmaculada Calvo Grant/research support from: received research grants from Pfizer, Roche, Novartis, Clementia, Sanofi, MSD and GSK, Consultant for: Advisory boards: Novartis, AbbVie, Speakers bureau: AbbVie, Roche, Novartis, Pfizer, Astra Zeneca, Sanofi, Gilead, Gerd Hormone: None declared, Ivan Foevdan Consultant for: Bayer, Lilly, Genentech, Bristol-Myers Squibb, Novartis, Daniel Kingsbury Consultant/research support from: Clinical trial support from Bristol-Myers Squibb, Rik Joos Grant/research support from: Bristol-Myers Squibb, Celgene, Pfizer, Consultant for: Bristol-Myers Squibb, Celgene, Sandoz, Maria Gastanaga: None declared, Carine Wouters Consultant/research support from: Grant/research support to Istituto Gaslini from GlaxoSmithKline immune-inflammation: unrestricted grant to study Blau syndrome. Roche: unrestricted research grant; Pfizer: grant for psychological care of patients with JIA, Grant/research support from: GSK, Roche, Pfizer, Johannes Breedt: None declared, Thomas Lutz Speakers bureau: MSD, Tatiana Miraval: None declared, Nadina Rubio: None declared, Yeddie Eize B employee of: Employee of excelya which received funding from Bristol-Myers Squibb, Rik Joos Consultant/research support from: Bristol-Myers Squibb, Celgene, Pfizer, Consultant for: Bristol-Myers Squibb, Celgene, Sandoz, Maria Gastanaga: None declared, Carine Wouters Consultant/research support from: Grant/research support to Istituto Gaslini from GlaxoSmithKline immune-inflammation: unrestricted grant to study Blau syndrome; Roche: unrestricted research grant; Pfizer: grant for psychological care of patients with JIA, Grant/research support from: GSK, Roche, Pfizer, Johannes Breedt: None declared, Thomas Lutz

OP0057

TREATMENT WITH ANAKINRA IN SYSTEMIC JUVENILE IDIOPATHIC ARTHRITIS
Manuela Pardeo, Claudia Bracaglia, Anna Tulone, Antonella Insalaco, Giulia Marucci, Rebecca Nicolai, Virginia Messina, Emanuela Sacco, Fabrizio De Guido, Fabio Cipolletta, Gianluca Bambino Gesù, Division of Rheumatology, Rome, Italy

Background: Systemic juvenile idiopathic arthritis (sJIA) accounts for 20-25% of all cases of juvenile chronic arthritis. The sJIA patients, who developed marked elevation of inflammatory markers and the absence of autoantibodies make this disease different from other JIA forms. sJIA should be considered as a polygenic autoimmune disease. Interleukin 1 (IL-1) has been shown to be a major mediator of the inflammatory cascade that underlies sJIA. Treatment with anakinra has been reported to be effective in a sizable portion of patients with sJIA. Objectives: To assess clinical response rate and disease course in sJIA patients treated with anakinra. To evaluated whether the response to anakinra was related to baseline variables.

Methods: We reviewed 56 (28 F) consecutive patients with sJIA treated with anakinra for at least 6 months in our institution. The diagnosis of sJIA was established according to the International League of Associations for Rheumatology (ILAR) classification criteria. We analyzed the effect of anakinra on fever, rash, number of active joints, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), white blood cells count, platelets count and ferritin levels. Clinically inactive disease (CID) was defined according to Wallace criteria. Clinical and laboratory data were obtained using a standard data collection form.

Results: The median age at the disease onset was 5.7 (IQR 2.9-10.2) years. The time from onset to received anakinra was 1.9 (IQR 0.7-9.7) months. At baseline 52/56 (93%) of patients had fever and median number of active joints was 2 (IQR 1-4). After 6 months of treatment 39 patients (69.6%) met criteria for inactive disease. Among 56 patients 17 (30.3%) received anakinra in monotherapy and 39 (69.6%) received anakinra with glucocorticoids. There were no statistically significant differences between the two groups for demographic, clinical and laboratory features among patients who started anakinra in the first 2 months from disease onset compared to those who started anakinra after 2 months. At 6 months after beginning of anakinra treatment, 27/29 patients (93.1%) who started anakinra within 2 months from disease onset and 12/27 (44.4%) who started anakinra after 2 months from disease onset reached clinical inactive disease off glucocorticoids (p<0.0001). Patients who started anakinra after the first 2 months from disease onset have a significantly higher risk of non-response (OR=8.06, 95% CI: 2.03-32.0).

Conclusion: According with several observations, anakinra is effective in a significant proportion of patients with sJIA. A possible approach to introduce IL-1 inhibitor, with or without concomitant glucocorticoids, early in the disease course taking advantage of a “window of opportunity” has been suggested. Our observation confirms that earlier treatment with anakinra is associated with a better short-term outcome. Moreover, our results show that beginning of treatment after two months of disease is correlated with a high risk of non-response.

REFERENCE:

Disclosure of Interests: Manuela Pardeo: None declared, Claudia Bracaglia: None declared, Anna Tulone: None declared, Antonella Insalaco: None declared, Giulia Marucci: None declared, Rebecca Nicolai: None declared, Virginia Messina: None declared, Emanuela Sacco: None declared, Fabrizio De Benedetti Grant/research support from: Abbvie, Sobi, Novimmune, Roche, Novartis, Sanofi, Pfizer

OP0058

DEVELOPMENT OF INFLAMMATORY BOWEL DISEASE DURING TREATMENT WITH ETARECEPT IN PATIENTS WITH JUVENILE IDIOPATHIC ARTHRITIS
Roline Kuo1, Joost F. Swart2, Gabriella Giancane2, Sytze De Roock3, Triest Herlitze2, Pavla Dolezalova2, Helga Sanner2, Gordana Susic2, Flavio R. Sztajnbok2, D. Martiri2, Tamas Constantini2, V. Vargova2, Sujata Sawhney2, Marte Rygg2, Sheila Knupp D.E. Oliveira2, Marco Cattali2, Ellen Nordal2, Claudia Magalhaes2, Alberto Martini1, Nico Wullaert3, Nicoletta Ruperto2, Utrecht. WKZ, Pediatric Rheumatology, Utrecht, Netherlands; 2Paediatric Rheumatology International Trials Organisation, Genova, Italy

Background: Juvenile idiopathic arthritis (JIA) has a reported prevalence varying from 16 to 150 per 100,000 patients and it thereby is the most frequent chronic rheumatologic disease presenting in childhood. Inflammatory bowel disease (IBD) is an auto-inflammatory disease that can develop in patients with JIA. Results from multiple studies suggest an association between therapy with Etanercept (ETN) and occurrence of IBD in patients with JIA, which may or may not be counteracted by methotrexate. Objectives: The aim of this study was to describe characteristics of JIA patients who developed IBD and to evaluate a possible relationship between IBD onset and medication use at IBD onset.

Methods: Pharmachild, the largest international JIA registry, was used for this study. Patients were enrolled via members of the Paediatric Rheumatology
OP0059

PERIARTICULAR GLUCOCORTICOID INJECTIONS: DELINEATING THEIR USE IN JUVENILE IDIOPATHIC ARTHRITIS

Andrea Uva1, Lucilla Rava2, Hanan Jadoun3, Angela Aquilani3, Fabio Basta3, Rebecca Nicolai4, Fabrizio De Benedetti3, Silvia Magni-Manzoni3,4,1, La Sapienza, University of Rome, Department of Pediatrics, Rome, Italy;1,2RCCS Ospedale Pediatrico Bambino Gesù, Clinical Epidemiology unit, Rome, Italy;1,2RCCS Ospedale Pediatrico Bambino Gesù, Division of Rheumatology, Rome, Italy

Background: Glucocorticoid injections in periarticular sites (PAGI) such as tendons and bursae often complete the local treatment of active disease in juvenile idiopathic arthritis (JIA). However, the use of PAGI and their role in the achievement of disease remission has seldom been studied.

Objectives: To identify the clinical features of JIA patients treated with PAGI at the study center in a 6 years period, sites most frequently injected, the frequency of and the time for achieving local remission.

Methods: Records of JIA patients treated with PAGI at the study center from 2012 were retrospectively reviewed. Demographic and clinical features, including ongoing systemic treatment, sites of injection, procedure setting, type and dosage of glucocorticoid injected, time to achieve local remission (complete or partial when one/or more of the injected sites were in remission and one/or more showed persistent synovitis), frequency of remission of the injected sites at the last follow-up and side-effects were recorded.

Results: In a total of 293 procedures 647 tendons and 26 bursae were injected in 191 patients. Most of the patients were females (74%), with ILAR oligoarticular JIA subtype (50% persistent, 23% extended), followed by RF-negative polyarthritis (20%), RF-positive polyarticular (5.2%) and systemic JIA (1.3%), with a median age of 8.2 years (IQ 4.7-11.3) at the PAGI. All procedures were ultrasound-guided, 281 (96%) under general sedation. Acetate methylprednisolone was used in 96% of the procedures (average dosage 0.45 mg/kg/tendon, 0.89 mg/kg/bursa), whereas trimcinolone acetonide in 4%. In 255 procedures (87%) patients experienced remission in the injected sites after a median of 2.6 months (IQ 1.9-3.5). Forty-seven patients (24.6%) underwent to repeated injections in the same sites after at least 3 months from the 1st procedure. A total of 96 tendons and 9 bursae were re-injected during 69 procedures (23.5%). At the last follow up, after a median period of 29.4 months (IQ 15-45.48) from PAGI, patients experienced complete local remission in 259 (88.4%) injected procedures and partial local remission in 23 (7.8%). In 83 procedures with repeated injection(s) in the same site(s) (77%), patients were in local remission at the last follow up. In 77 procedures (26.3%) patients presented flare of disease in periarticular sites. Concerning concomitant therapy, at the time of each PAGI 115 patients (39.2%) were not on treatment, 137 (46.7%) were on methotrexate, 29 (9.9%) on methotrexate and biologics, 8 (2.7%) on biologics and 4 (1.5%) received others. Patients were started with a new treatment in around three months following 139 (47.4) procedures due to poor control of disease. In 56 (32.3%) procedures, patients experienced complete/local remission and maintained the same treatment before or after the injection at the last follow up in a median period of 20.8 months (IQ 12.67-39.35). Noteworthy, 81.4% of patients who experienced complete remission following the injection were not on concomitant treatment; 85.9% of patients who experienced complete remission at the last follow up did not receive concomitant treatment. In 24 injection procedures (8.2%) patients showed only mild local side effects (atrophy and hypopigmentation).

Conclusion: PAGI are a safe option in the management of JIA. In our cohort, patients treated with PAGI had more frequently persistent oligoarticular JIA subtype; acetate methylprednisolone was by far the most frequently used glucocorticoid. In 88.4% procedures patients experienced remission at last follow up. However, further investigations are mandatory to assess the role of concomitant therapy in achieving and maintaining remission.

Disclosure of Interests: Andrea Uva: None declared, Lucilla Rava: None declared, Hanan Jadoun: None declared, Angela Aquilani: None declared, Fabio Basta: None declared, Rebecca Nicolai: None declared, Fabrizio De Benedetti: None declared, Silvia Magni-Manzoni: None declared, La Sapienza, University of Rome, Department of Pediatrics, Rome, Italy;1,2RCCS Ospedale Pediatrico Bambino Gesù, Clinical Epidemiology unit, Rome, Italy;1,2RCCS Ospedale Pediatrico Bambino Gesù, Division of Rheumatology, Rome, Italy.

Grant/research support from: Abbvie, SOBI, Novimmune, Roche, Novartis. Sanofi, Pfizer, Silvia Magni-Manzoni Consultant for: Abbvie, Speakers bureau: Abbvie

DOI: 10.1136/annrheumdis-2019-eular.5716