for targeted and therapeutic manipulation of the microbiota in chronic inflammatory diseases.

Methods We have developed high-resolution microbiota flow cytometry which allows us to analyze the microbiota on a single cell level. This provides a non-invasive, fast and efficient diagnostic tool to visualize dramatic changes of microbiota composition in inflammatory diseases, fast and efficiently, and isolate distinct bacteria for functional and molecular analyses.

Results We have identified bacteria belonging to the genus Anaeroplasma, which increases the levels of mucosal IgA. Adoptive transfer of Anaeroplasma increases the numbers of IgA+ germline center B cells in the Peyer’s patches and of IgA-secreting plasma cells in the lamina propria of the small intestine leading to significantly enhanced mucosal IgA levels. Anaeroplasma controls IgA expression presumably its ability to induce expression of the regulatory cytokine TGF-β in T cells, as we show here.

Conclusions The anti-inflammatory properties of Anaeroplasma to induce the anti-inflammatory cytokine TGF-β, thereby also strengthening the intestinal barrier by enhancing mucosal IgA, qualify Anaeroplasma as potent probiotic for the prevention and treatment of chronic inflammation.

Disclosure of Interest None declared.

P105 IDENTIFICATION OF RARE CODING VARIANTS IN IL-1-RELATED PATHWAYS IN PATIENTS WITH ADULT-ONSET STILL’S DISEASE

1^G Cavalli*, 2^R van Deuren, 3^P Arts, 3^M Steehouwer, 3^S Colafrancesco, 3^R Priore, 3^L Cantarini, 1^E Baldesera, 3^F van de Veerdonk, 1^L Dagna, 1^A Hoischen, 1,2^CA Dinarello. 1Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UniRAR), Vita-Salute San Raffaele University, Milan, Italy; 2Radboud Institute of Molecular Life Sciences; 3Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands; 3Rheumatology, University of Padua, Padua; 3Rheumatology, Sapienza University, Rome; 3Rheumatology, University of Siena, Siena, Italy; 1Department of Medicine, University of Colorado Denver, Aurora, CO, USA

Career situation of first and presenting author Assistant.

Introduction Adult-onset Still’s disease (AOSD) is a rare auto-inflammatory disease characterized by fever, arthritis, and multi-organ involvement. Inflammation in AOSD is mediated by interleukin (IL)-1β, as confirmed by the clinical efficacy of selective blockers. The genetic predisposition to this IL-1-driven inflammation remains nevertheless elusive. Previous studies failed to identify associations between polymorphisms in the IL-1 genes and AOSD, thus pointing at more complex genetic mechanisms. These cannot be investigated with traditional techniques for genetic partitioning, such as GWAS, which only assess common variants and polymorphisms. Studies focusing on highly penetrant rare variants or different types of mutations (i.e. small copy-number variations; insertions/deletions) are warranted.

Objectives We hypothesized that genetically determined changes in IL-1-related pathways resulting in excessive IL-1β activity lead to the development of autoinflammation in AOSD. Scope of this study was to unravel the combined mutational variation of a network of IL-1-related receptors, pathways, counter-regulators, and cellular processes possibly involved in the pathogenesis of IL-1-mediated inflammation.

Methods We collected clinical and genetic data from a large cohort of 76 AOSD patients and developed an innovative platform based on molecular inversion probes technology, which enables highly multiplexed targeted-resequencing of the coding sequence of 48 genes related to the IL-1-pathway, and allows studying rare and common variants in one assay. We have also screened 500 healthy controls, and 1000s of samples with other disorders using the same assay.

Results We identified rare and unique (i.e. private variants) in the IL-1 pathway in several individuals with AOSD. Whether any of these are involved in a strong predisposition to AOSD is currently followed-up. Rare genetic variants have been identified in six IL-1-pathway ‘clusters’:

1. Inflammasomes;
2. IL-1 pathway;
3. IL-1 family;
4. IL-18 pathway;
5. Autophagy;
6. ROS production.

Conclusions Unraveling the genetic bases of inflammation in AOSD deepens our understanding of the human innate immune system. This study platform may now serve for the genetic analysis of other IL-1-mediated conditions (i.e. gout and other autoinflammatory diseases), whose genetic predisposition remains elusive. Equally important, the identification of pathways amenable to targeting with small molecules or biologics may translate into remarkable clinical implications.

Disclosure of Interest None declared.

P106/O25 DNA METHYLATION IN LYMPHOCYTE SUBSETS AS A MEDIATOR OF GENETIC RISK IN EARLY RHEUMATOID ARTHRITIS

1^AD Clark*, 1^N Nair, 1^AJ Skelton, 1^AE Anderson, 1^N Thalayasingam, 1^N Naamane, 1^D Dobill, 1^J Massey, 1^S Eyre, 2^A Barton, 1^D Isaacs, 1^LN Reynard, 1^AG Pratt. 1Institute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne; 2ARUK Centre for Genetics and Genomics, Centre for Epidemiology and NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University and Manchester University NHS Foundation Trust, Manchester; 1Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK

Career situation of first and presenting author Student for a master or a PhD.

Introduction Genome-wide association studies (GWAS) have identified over 100 RA-associated risk loci, whose enrichment for lymphocyte-specific enhancer elements is consistent with a regulatory function of many causal variants in these cells. Epigenetic modifications have also been strongly implicated in RA pathogenesis.

Objectives To investigate the role of DNA methylation as a mediator of RA genetic risk.

Methods CD4+ T lymphocyte-specific DNA and RNA were extracted from freshly isolated blood of 43 RA and 60 disease control patients, along with equivalent material from B-lymphocytes of 46 RA and 73 controls. Comparator groups were drug-naïve and matched for age, sex, and acute phase response. Genotyping, gene expression and methylation
profiling was carried out using Illumina chip array technology. After mapping genome-wide methylation quantitative trait loci (mQTLs) in cis (<1 Mb), we focused on known RA risk loci, integrating paired normalised gene expression measurements for transcripts within 500 kb of index CpGs. We also sought trans mQTLs, highlighting RA-specific effects.

Results CD4+ T lymphocyte cis-mQTLs co-localised with 30 independent (r2<0.8) RA-associated SNPs, whilst in B lymphocytes such mQTL effects were present at 31 RA SNPs. 80% of these variants functioned as cis-mQTLs in both cell types. CpG sites subject to cis effects at risk loci were depleted in regions associated with cell type-specific repressed chromatin marks, with enrichment at enhancer regions and those flanking transcription start sites, suggesting active roles in transcriptional regulation. Linear regression identified regulatory effects of these CpG sites on gene expression, and causal inference testing highlighted genes for which risk SNPs most likely modulate gene expression via CpG methylation. Such effects, robust to false discovery rate, were particularly prevalent in CD4+ T lymphocytes, for example implicating ANKRD55, ORMDL3, and FCRL3 as causal genes in this cell type. Our analysis of mQTLs acting in trans identified inter-chromosomal SNP-CpG associations, also revealing instances of differential effect size in RA patients and controls.

Conclusions Here we highlight an important mechanism by which genetic variants may contribute to altered lymphocyte phenotype, and demonstrate the utility of DNA methylation profiling as a tool for the prioritization of candidate genes following GWAS studies in RA. The functional roles of highlighted genes in CD4+ T cells during RA pathogenesis await clarification.

Disclosure of Interest None declared.

P107 POLYMORPHISMS IN SLC2A9 AND SLC22A12 GENES ARE RELATED TO HYPERURICEMIA, GOUT AND ALSO TO HYPOURICEMIA

1,2K Pavelcova*, 1,2J Bohata, 1K Pavelka, 1B Stiburkova. 1Institute of Rheumatology; 2Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.

10.1136/annrheumdis-2018-EWRR2019.95

Career situation of first and presenting author Student for a master or a PhD.

Introduction Serum uric acid concentration is significantly influenced by urate transporters, such as ABCG2 (encoded by ABCG2 gene), GLUT9 (SLC2A9 gene) and URAT1 (SLC22A12 gene). The main function of ABCG2 is uric acid secretion, whereas GLUT9 and URAT1 also ensure reabsorption. Pathogenic allelic variants in SLC2A9 and SLC22A12 are not only associated with hyperuricemia and gout, but they also lead to rare hereditary renal hypouricemia (type 1 – OMIM #220150 or type 2 – OMIM # 612076).

Objectives Previously, we analyzed ABCG2 gene and detected non-synonymous variants that lead to hyperuricemia and early onset of the gout. The aim of this study was to find a possible correlation between variants in SLC2A9 and SLC22A12 and hyperuricemia, hyperuricemia and gout.

Methods We recruited a cohort of 232 individuals with primary gout and hyperuricemia. We examined coding regions of SLC2A9 (13 exons) and SLC22A12 (10 exons) by Sanger sequencing. We also analyzed SLC2A9 and SLC22A12 in five patients with suspect hypouricemia.

Results In the cohort of 232 individuals, we detected five synonymous variants, 18 intron variants and seven missense variants in SLC2A9: A17T, G25R, T275M, D281H, V282I, R294H, and P350L. In SLC22A12 gene, we found six synonymous variants and seven intron variants.

We detected several pathogenic variants in patients with suspect hypouricemia. Intrinsic variant c.1419+1G>A in SLC2A9 most likely affects the splicing. In SLC22A12, we found rare pathogenic variants T467M and L415_G417del. These variants have according to our previous study high frequency in the Czech and Slovak Roma population.

Conclusions The uric acid level is determined by a complex mechanism that is not yet fully understood. Disorders of urate transporters can not only lead to hyperuricemia, but in rare cases also to hypouricemia.

REFERENCES

Acknowledgements This study was supported by the grant from the Czech Republic Ministry of Health AZV 15-26693A.

Disclose of Interest None declared.

P108/028 FATTY ACID OXIDATION CAN DRIVE HUMAN MONOCYTE DERIVED CCL20 IN THE RA SYNOVIAL ENVIRONMENT

1,2LC Rodgers*, 1,3J Cole, 1K Rattigan, 1,4MP Barrett, 1N Kuriain, 1IB McInnes, 1,12CS Goodyear. 1Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of MVLS; 2GLAZgo Discovery Centre, Institute of Infection, Immunity and Inflammation, College of MVLS; 3Welcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of MVLS; 4Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of MVLS, University of Glasgow, Glasgow, UK; 5Precision Medicine and Genomics, RIA Precision Medicine Unit, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden

Career situation of first and presenting author Post-doctoral fellow.

Introduction Metabolic pathways are considered to have a governing role in inflammatory cascades in myeloid cells. This is particularly evident in murine macrophages where glycolysis and fatty acid oxidation (FAO) have been implicated in inflammatory cascades and immune regulation respectively. However, investigation of intracellular metabolism of human monocytes in the context of the hypoxic and inflammatory RA synovium is lacking.

Objectives To mimic the hypoxic RA environment in vitro and metabolically profile human monocytes. Determine if altered metabolic pathways have a functional impact on monocytes under disease-relevant conditions.

Methods Human monocytes were isolated from buffy coats and were exposed to hypoxia in vitro. Metabolic profiling of monocytes was carried out by LC-MS metabolomics. Inflammatory mediator release after LPS or RA-synovial fluid (RA-