Career situation of first and presenting author
Post-doctoral fellow.

Introduction Monocytes in mice are distinguishable by expression of Ly6c. Ly6chi (classical) monocytes are associated with pro-inflammatory responses, while Ly6clo (non-classical) are involved in patrolling endothelial membranes. We have previously shown that depletion of monocytes prevents serum transfer induced arthritis (STIA) in mice, and that Ly6clo monocytes are critical for inflammation.

Objectives We aim to contrast Ly6clo monocytes from the circulation, lining vessels, and tissue to determine their involvement in inflammation.

Methods Female 8-10 week old NR4A1-/-, CX3CR1ERCre.zsGFP and C57Bl/6 mice were used in all studies. CX3CR1ERCre.zsGFP were utilized for cell tracking studies and joint shielded bone marrow chimera via administration of tamoxifen (tam). Intravascular monocytes were identified by I.V. anti-CD45 labeling before perfusion. STIA was induced via I.V. KBxN sera. Cell populations were quantified by flow cytometry and FACS sorted for RNA-seq. Monocytes were identified CD45+, CD11b+ Ly6G-, TIM4-, CD64- Ly6clo and subdivided into intravascular (labeled, CD43+), trans-vascular (labeled CD43-) and extravascular (no label).

Results NR4A1-/- mice retain only 5% of circulating Ly6clo monocytes but all joint Ly6clo cells. STIA was comparable in NR4A1-/- and C57Bl/6 mice suggesting circulating Ly6clo are redundant. Transcriptional profiling of Ly6clo cells identified distinct pathways enriched in upregulated genes between Ly6clo and Ly6chi cells. In the joint we identified three populations of Ly6clo monocytes: extravascular unlabeled cells, labeled trans-vascular cells, and labeled intravascular cells adherent to endothelium. Mice given tam D8 of gestation had GFP+ microglia only, whereas D15 tam induced GFP+ synovial macrophages and unlabeled Ly6clo monocytes. Both labeled Ly6clo populations were GFP-, indicating unlabeled and unlabeled Ly6clo arise from different progenitors. This was confirmed by bone marrow chimera studies showing labeled Ly6clo cells are replenished from blood monocytes. Clodrionate loaded liposomes depleted labeled CD43+ cells but did not affect CD43- cells or unlabeled cells. With our previous finding that clo-lip prevents STIA, these suggest adherent CD43+ Ly6clo cells are essential. This is supported by the finding that labeled Ly6clo monocytes expand rapidly during the first 1 hour of STIA. Adherent CD43+ cells expand especially rapidly, increasing in population size by 30x.

Conclusions We have identified and described two previously uncharacterized populations of Ly6clo cells in the joint- intravascular adherent and trans-vascular which have distinct origins and phenotype from both extravascular and circulating Ly6clo. The findings presented here strongly suggest adherent Ly6clo monocytes are a key effector cell in inflammatory arthritis.

Disclosure of Interest None declared.

Career situation of first and presenting author
Student for a master or a PhD.

Introduction Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disorder characterized by lymphocytic infiltrates and destruction of the salivary glands (SG). Several lines of evidence support the hypothesis that SG epithelial cells (SGECs) are not only the target of autoimmunity in pSS but may also play a role for its initiation and maintenance.

Objectives To study the survival and the activation of B lymphocytes cocultured with SGECs from pSS patients compared to controls.

Methods Primary cultures of SGECs were established from minor SG biopsies. Patients had pSS according to 2016 EULAR/ACR criteria and controls had sicca symptoms without any antibodies and with normal SG biopsies. The coculture involved B lymphocytes isolated by CD19 magnetic bead positive selection from healthy donors’ blood (purity >80%). Several conditions of stimulation were tested: IFNa 2400 U/mL, IFNg 5 ng/mL, Poly(IC) 10 µg/mL or 30 µg/mL. After 5 days, the viability, the activation (CD38) and the differentiation (CD27) of B lymphocytes were assessed by flow cytometry. Mann-Whitney (unpaired data) and Wilcoxon (paired data) were used for statistical analysis.

Results A significant increase of B lymphocytes survival was observed when cocultured with SGECs compared to B lymphocytes cultured alone, in all conditions of stimulation (p<0.05). The survival of B lymphocytes (percentage of alive cocultured B lymphocytes-percent of alive cultured alone B lymphocytes) was increased when the cocultures were performed with SGECs from pSS patients (n=5) compared to SGECs from controls (n=5), in all conditions of stimulation (p<0.05), except IFNg. Moreover, there was a trend for an increase of B lymphocytes activation, assessed by higher percentages of CD38+ B lymphocytes when the cocultures were performed with SGECs from pSS patients compared to SGECs from controls. This difference was statistically significant (p<0.05) in the condition stimulated with TLR3 agonist (Poly(IC) 10 µg/mL). The percentage of CD27 + B lymphocytes was not affected by the cocultures and no difference between pSS and controls SGECs was observed.

Conclusions This coculture model showed a differential effect of SGECs from pSS compared to controls on B lymphocytes survival. Interestingly, there was also a trend for a higher activation level of B lymphocytes when cocultured with SGECs from pSS compared to controls. These results suggest that SGECs could play a major role in pSS pathophysiology through B lymphocytes support and activation.

Disclosure of Interest None declared.

Activated Memory T Cells Produce Ligands that Cause NF-kB-Dependent Inflammatory Activation of the Endothelium

KC Jeucken, IP van Hamburg, SW Taa*. Experimental Immunology/Clinical Immunology and Rheumatology, Amsterdam UMC, Amsterdam, Netherlands

Introduction The current understanding of the role of B lymphocytes in rheumatoid arthritis (RA) is limited. Recent evidence has suggested that autoreactive B cells may be involved in pathogenesis and autoantibody production in RA.

Objectives To determine the role of B lymphocytes in the development of RA.

Methods B cells from RA patients were assessed for their ability to induce inflammation in vitro. The effects of B lymphocytes on endothelial cell activation were analyzed using flow cytometry and ELISA.

Results B lymphocytes from RA patients induced increased expression of the inflammatory marker TNFα on endothelial cells compared to controls. This effect was dose-dependent and could be blocked by anti-CD40 antibodies.

Conclusions These findings suggest that B lymphocytes play a role in the development of RA by inducing inflammation through activation of endothelial cells. This research is ongoing and future studies will focus on identifying the specific mechanisms involved in this process.