CONSTITUTIVE OVEREXPRESSION OF INTERLEUKIN 38

Objectives This study aimed to assess whether peripheral monocytes in RA are pre-programmed to become M1 pro-inflammatory macrophages.

Methods Blood was collected from healthy donors, at-risk individuals (Those with arthralgia, ACPA+/RF+, normal CRP and no evidence of synovitis) and established RA patients. CD14+ monocytes were isolated from peripheral blood mononuclear cells using a CD14 magnetic bead separation kit. Cells were stimulated with LPS (100 ng/ml) for 3–24 hours and to assess the effects of STAT3 inhibition, cells were pre-treated with STAT3i (10 μM) for 30mins. A Human Cytokine and Chemokine PCR array was carried out and those genes most differentially expression were further validated in a larger cohort of patients using RT-PCR. The metabolic profile of cells was assessed using Seahorse XFE Technology, which concomitantly analysis glycolysis and mitochondrial respiration in real-time. Gene and protein expression of key inflammatory and glycolytic markers was also carried out by RT-PCR, western blotting and ELISA.

Results CD14+ RA monocytes are hyper-inflammatory upon stimulation, with significantly higher expression of IL-1β, TNFα, IL-6, IL-27, CXCL10 and CXCL11 compared to healthy controls, which is indicative of a M1-like pro-inflammatory phenotype. These hyper-inflammatory monocytes are highly glycolytic, with increased expression of HIF1α, HK and PFKFB3, key glycolytic enzymes. Both baseline glycolysis and baseline oxidative phosphorylation are increased in RA CD14+ monocytes, paralleled by increased ATP synthesis and maximal respiratory capacity, suggesting a hyper-energetic phenotype. This hyper-inflammatory, hyper-glycolytic phenotype is mediated by STAT3, as selective STAT3 inhibition can significantly decrease M1-like cytokines and PFKFB3 and HK2 expression. In addition, STAT3 inhibition significantly decreases both oxidative phosphorylation and glycolysis pathways. Finally, this pro-inflammatory phenotype is evident in CD14+ monocytes from arthralgia ACPA+/RF+ people at risk of developing disease, demonstrating that these processes may precede clinical manifestations in RA.

Conclusions This study demonstrates the unique inflammatory and metabolic phenotype of RA monocytes, suggesting that peripheral CD14+ monocytes may be pre-programmed to become M1-like pro-inflammatory macrophages. In addition, the observation of this phenotype in at-risk individuals indicates that these features may precede clinical manifestations of RA and therefore could be useful as a biomarker for early diagnosis.

Disclosure of Interest None declared.

P070/O09

MIR-221–3P IS UPREGULATED IN RHEUMATOID ARTHRITIS AND AFFECTS JAK3/STAT3 SIGNALING IN M2-MACROPHAGES

1,2L Quero*, 1,2É Hanser, 1,2AN Tieden, 1,2O Kyburz. 1DBM, University of Basel; 2Experimental Rheumatology, University Hospital, Basel, Switzerland

Objectives The aim of this study is to investigate the function of IL-38 in human keratinocytes, using the immortalized normal human keratinocyte (NHK) cell line stably transfected with vectors allowing for constitutive or inducible IL-38 overexpression.

Methods NHK cell proliferation and mortality were assessed respectively by cell counting and by measuring LDH activity in the supernatant of high density cell culture. Differentiation of NHK cells was initiated by switching to a culture medium containing high Ca++ and serum. mRNA levels of differentiating NHK cells were determined by RTqPCR.

Results Constitutive IL-38 overexpression reduced the proliferation of NHK cells and lead to increased mortality. Differentiating NHK cells constitutively overexpressing IL-38 had increased mRNA levels for the early differentiation marker keratin 10 as compared to empty vector transfected control cells. On the contrary, expression of the late differentiation marker involucrin was reduced in NHK cells constitutively overexpressing IL-38. To further explore potential effects of IL-38 on keratinocyte differentiation, while circumventing the impact of its constitutive overexpression on cell fitness, we set up a doxycyclin-inducible Tet-On system to overexpress IL-38 in NHK cells.

Conclusions We are currently optimizing 2D and 3D culture conditions for *in vitro* differentiation of NHK cells to mimic more closely the situation in human skin. We will then study the impact of IL-38 on NHK cell differentiation using cells transfected with the inducible IL-38 expression system. In conclusion, our results suggest that constitutive overexpression of IL-38 decreases proliferation and viability of NHK cells. We will thus use an inducible expression system to further investigate the effects of IL-38 on NHK cells.

Disclosure of Interest None declared.