used the following questionnaires: Female Sexual Function Index (FSFI), Brief Index of Sexual Function for Women (BISF-W), Sexual Quality of Life Questionnaire (SQoL-F), Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12), Pelvic Floor Distress Inventory Questionnaire (PFIQ7), Fatigue Impact Scale (FIS), Beck’s Depression Inventory II (BDI II), Health Assessment Questionnaire (HAQ), Scleroderma Health Assessment Questionnaire (SHAQ) and Human Activity Profile (HAP).

Results Compared to HC, patients with SSc had significantly higher prevalence and greater severity of sexual dysfunction (FSFI, BISF-W: in all subscales as well as total scores), dysfunction of pelvic floor (PISQ-12, PFIQ7), and worse sexual quality of life (SQoL-F) (table). Worse scores in SSc patients were associated with higher disease activity [ESSG activity index: SQoL-F (r = −0.364, p = 0.0443)], greater fatigue [FIS correlated negatively with both FSFI, and BISF-W], more severe depression [BDI-II: FSFI (r = −0.553, p = 0.0002), BISF-W (r = −0.514, p = 0.0007)], deteriorated quality of life [SHAQ: FSFI (r = −0.536, p = 0.0003), BISF-W (r = −0.563, p = 0.0001)], SQoL-F (r = −0.338, p = 0.0382), PISQ-12 (r = 0.563, p = 0.0051)], and worse ability to perform physical activities [HAP: FSFI (r = 0.407, p = 0.0082), BISF-W (r = 0.409, p = 0.0078)].

Conclusions Women with SSc reported significantly impaired sexual function, sexual quality of life and pelvic floor function than age-matched healthy controls. Worse scores in SSc were associated with disease activity, physical activity, fatigue, depression and quality of life.

Acknowledgements Supported by AZV-16-33574A, MHCR 023728, and SVV – 2 60 373.

Disclosure of Interest None declared.

P026 CONTROL OF A2,6-SIALYLATION IN B-CELLS, AND CONSEQUENCES OF REDUCED B-CELL SIALYLATION IN PATIENTS WITH RHUMATOID ARTHRITIS

J. Johnston*, L. Ouboussad, A. Aslam, M. H. Buch. Immn, University of Leeds; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK


Career situation of first and presenting author Student for a master or a PhD.

Introduction Sialic acids are a family of 9-carbon sugars, added to the termini of glycoprotein chains, which are present on the surface of many cells, and secreted proteins.1 Sialic acids on glycan chains of the Fc fragment of IgG molecules can affect how IgG binds Fc receptors.2 In RA and other autoimmune conditions, disease specific auto-antibodies display decreased Fc sialylation compared with normal IgG.3 It has also been shown that plasmablasts from patients with RA display reduced cell surface sialylation compared to healthy control cells.4 Factors which determine B-cell surface sialylation, including regulation of ST6Gal1 and NEU1 which add and cleave sialic acid from glycoprotein chains respectively, and consequences of altered sialylation have not been well described.

Objectives The aim of this study was to investigate factors which influence α2,6-sialylation in B-cells from the peripheral blood of healthy controls and patients with RA, and to investigate regulation of expression of ST6Gal1 and NEU1 in B-cells.

Methods B-cells isolated from the peripheral blood of healthy volunteers were cultured for 48 hours in the presence of TLR ligands, anti-IgM, CD40L, cytokines (TNF, IL-4, IL-6, IL-17) before α2,6-sialylation of the B-cell surface, and mRNA expression of genes related to α2,6-sialylation were measured by SNA lectin flow cytometry, and qPCR respectively. PBMCs were also isolated from peripheral blood and T and B-cells activated using CD3/28 beads and anti-IgM/CD40L respectively, before measuring B-cell sialylation and expression of ST6Gal1 and NEU1 mRNA.

Results Surface α2,6-sialylation was found to be increased in B-cells stimulated with TLR ligands or anti-IgM/CD40L. This was accompanied by a decrease in expression of both ST6Gal1 and NEU1 mRNA over 48 hours. Surface sialylation was also increased by activated T-cells in co-culture experiments, however sialylation was reduced in B-cell cultures in the presence of TNF.

Conclusions α2,6-sialic acid is upregulated on the surface of healthy control B-cells in response to activation in vitro, and may be downregulated by TNF. Further experiments will determine if the environment in which naïve/memory B-cells are activated determines plasmablast/plasma cell sialylation, and if B-cells from patients with RA undergo the same changes in response to stimuli.

REFERENCES

Disclosure of Interest None declared.

P027 SRC-LIKE ADAPTOR PROTEIN EXPRESSION IN RHUMATOID ARTHRITIS

P. Királyhidi*, E. Molnár, E. J. Baricza, N. Marton, E. Buzás, G. Nagy. Department of Genetics, Cell- and Immunobiology, Semmelweis University; Jahn Ferenc South-Pest Hospital, Budapest, Hungary

10.1136/annrheumdis-2018-EWRR2019.21

Career situation of first and presenting author Student for a master or a PhD.

Introduction The Src-like adaptor protein (SLAP) plays a central role in the fine regulation of both B- and T-lymphocyte activation. According to our previous data SLAP is responsible for the proteasomal degradation of the CD3 zeta chain (CD3ζ) of T-lymphocytes.

Objectives We studied the effect of IL-10, IL-17A and TNF-α treatment on the SLAP expression of CD4+ T- and CD19+ B-lymphocytes.

Methods Peripheral mononuclear cells (PBMC) were isolated from healthy donors and rheumatoid arthritis (RA) patients. CD4+ T-cells or CD19+ B-cells were isolated by negative magnetic separation; stimulated with ConA and goat anti-human IgG + IgM F(ab)2 fragments respectively. The samples were treated with IL-17A (20 ng/ml and 80 ng/ml, 24 hour), IL-10 (100 U/ml, 48 hour and 72 hour) and TNF-α (20 ng/ml and 60 ng/ml, 24 hour). The SLAP and CD3ζ expression were measured by Western blot.

Results Both the SLAP and the CD3ζ expression of the MTX treated patients’ CD4 cells were higher upon IL-17A and IL-10 treatment, than those of the MTX non-treated RA patients’ or healthy donors’. The TNF-α induced SLAP expression of RA patients’ CD19 B-cells was higher than those of the healthy donors’ B-cells (p = 0.05).