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Figure 6  T bet+ AtMs in�ltrated into the renal tissues of patients with lupus nephritis (LN). (A) Multiplexed IHC was applied to detect the CD20+T-
bet+ AtMs in renal tissues of patients with LN. Peritumor renal tissue was used as control. (B) Comparison of the frequency (T-bet+ AtMs%B) and 
density of T-bet+ AtMs in renal tissues of LN (n=27) and peritumor renal tissues (n=10). (C) T-bet+ B cells showed higher expression of p-S6 than 
T-bet- B cells in renal tissues of patients with LN. (D) Comparison of the �uorescent intensity of p-S6 in 26 T-bet- and 26 T-bet+ B cells in renal tissues 
from three patients with LN. (E) Correlation between T-bet+ AtMs%B in renal tissues and AtMs%B in peripheral blood from the same patients with LN 
(n=9). (F) Patients with LN were divided into three groups based on renal SLEDAI Scores and the frequency of renal T-bet+ AtMs was compared among 
the three groups (n=17, 10, 6, respectively). (G) Comparison of the frequency of renal T-bet+ AtMs among different pathological types of patients with 
LN (type �à (n=3), type �á (n=7), type �â (n=4), type �à +�â (n=7) and type �á +�â (n=6)). Error bars indicated mean±SEM. P values were determined 
by Mann-Whitney test (B and D), Spearman’s rank correlation (E) and Kruskal-Wallis test with Dunn’s multiple comparisons test (F and G). AtMs, 
atypical memory B cells; AtMs%B, frequency of AtMs among total B cells; AU, arbitrary unit; IHC, immunohistochemistry.

the compromised capacity of AtMs to undergo terminal differ-
enation12 27 34 and we obtained similar results. By contrast, in 
one lupus study, following the stimulation of TLR7/IL-21/IL-10, 
although lupus AtMs did show a proliferation defect compared 
with CMs, they produced comparable amount of IgG on a per 
cell basis.33 Using activated T cells as the stimulus, Wang et al 
found similar frequencies of antibody-secreting cells and IgG 
secretion from lupus AtMs and CMs.17 While the difference 
from the above studies can be ascribed to the different experi-
mental conditions, it should be mentioned that lupus AtMs are 
in a paradoxically differentiated status: AtMs express high levels 
of both B cell identity genes SPI1, MEF2C, PAX5 and BCL6, 
as well as plasma cell-driving genes IRF4, XBP1 and SLAMF7. 
Our tentative explanation is that AtMs are in fact dragged by 
two opposing differentiation forces. Most likely AtMs are not 

essentially poised to plasma cell differentiation themselves, 
however, they may be efficiently mobilised into plasma cell pool 
under certain pathogenic conditions like lupus flare.

Our and other studies have shown that lupus AtMs are highly 
enriched with antinuclear autoantibodies, including Sm, Nucle-
osome and Chromatin.8 16 17 19 It’s interesting to ask how these 
pathogenic antibodies are generated and diversified in vivo. The 
isotype non-switched lupus AtMs (named activated naive B cells) 
showed higher IgM mutation rates than those of naïve B cells,46 
indicating that a mechanism of antibody mutation is working 
for non-switched AtMs. For switched AtMs, the IgG mutation 
rates were lower than those of switched memory B cells from the 
same patients with lupus.33 Together with lower expressions of 
CXCR4 and CXCR5 on AtMs, the above evidence suggests that 
AtMs are a population of extrafollicular B cells independent of 
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germinal centre origin. Intriguingly, we found that lupus AtMs 
express high levels of AICDA, which encodes activation-induced 
cytidine deaminase (AID), a molecule critical for somatic muta-
tion and immunoglobulin isotype switching.47 We propose that 
AtMs are uniquely differentiated from a population of self-re-
active naïve B cells48 in the context of chronic stimulation. 
High expression of PAX5 and BCL6 will ensure B cell identity 
in order for AID to perform its function and generate autoan-
tibodies with sufficient affinity. In the context of disease flare, 
lupus AtMs could be abundantly expanded and mobilised into 
plasma cells to produce high levels of pathogenic autoantibodies.

In summary, the current study reveals new molecular and 
functional features of lupus AtMs. Particularly, as mTORC1 is 
required for both the generation and the terminal differentiation 
of AtMs, targeting mTORC1 pathway may represent an alterna-
tive strategy to the current lupus therapies, especially for those 
patients refractory to conventional regimens.

Methods
Details of methods are available in online supplementary mate-
rials section.
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