Variation in antinuclear antibody detection by automated indirect immunofluorescence analysis

Pisetsky et al reported on assay variation in the detection of antinuclear antibodies (ANA) in sera of patients with established systemic lupus erythematosus (SLE). The authors determined ANA in sera from 103 patients with established SLE using three different validated and widely used immunofluorescence assays (IFA) (from ImmunoConcepts, Inova Diagnostics and Bio-Rad), an ELISA and a bead-based multiplex assay (both from Bio-Rad). With IFA, the frequency of ANA negativity varied from 4.9% to 22.3%. Part of the samples (11.7% and 13.6%) were negative with ELISA and multiplex assay, respectively. This study showed differences among IFA ANA kits which might have implications for eligibility for clinical trials.

In a correspondence to the paper of Pisetsky et al., Dr Mahler discussed some relevant points related to ANA detection, including the substantial interobserver variability inherent to IFA. Accordingly, Dr Mahler recommended to use automated interpretation systems to reduce variability and subjectivity.

We evaluated variation in ANA detection by automated IFA systems. Three samples (sample 1: homogeneous 1:320; sample 2: fine speckled 1:80; sample 3: negative) were distributed to 31 Belgian laboratories that use automated IFA systems and 27 laboratories participated (NOVA View n=12 (Inova Diagnostics, San Diego, USA); EUROPattern n=6 (Euroimmun, Lübeck, Germany); G-Sight n=7 (Menarini, Firenze, Italy); Image Navigator n=2 (ImmunoConcepts, Sacramento, California, USA)). Each sample was determined at least four times in different runs (the majority was determined at least eight times) according to the instructions of the manufacturer. The fluorescence intensity units (reported as light intensity units (LIU) or probability index)
Intralaboratory performance of antinuclear antibodies (ANA) by automated immunofluorescence assays (IFA) for NOVA View. Light intensity units (LIU) values for an analysis of sample 1 in 2016 and in 2017 (the time difference between the two determination ranged between 7 and 19 months). The results shown are from at least five (2016) or seven (2017) determinations in different runs. For each laboratory (L), the first set of results shown were obtained in 2016 and the second set of results in 2017.

Figure 2  Intralaboratory performance of antinuclear antibodies (ANA) by automated immunofluorescence assays (IFA) for NOVA View. Light intensity units (LIU) values for an analysis of sample 1 in 2016 and in 2017 (the time difference between the two determination ranged between 7 and 19 months). The results shown are from at least five (2016) or seven (2017) determinations in different runs. For each laboratory (L), the first set of results shown were obtained in 2016 and the second set of results in 2017.

For a selection of patterns, NOVA View allows to estimate the end titre from the analysis of the 1:80 dilution (see legend of figure 1). EUROPattern (performed by six laboratories) does not provide a measure of fluorescence intensities. It scored sample 1 positive for all determinations (n=61) (with the estimated end titre varying between 1:80 and 1:1280) and sample 2 for 59% of the determinations (n=51) (with the estimated end titre varying between <1:80 and 1:160). Sample 3 was negative in 92% of the determinations (n=60).

Pattern assignment by automated IFA was correct in 76%, 95% and 100% of the determinations by NOVA View, EUROPattern and G-Sight for sample 1. For sample 2, the values were, respectively 32%, 100% and 100%. This indicates that pattern assignment by automated systems should be verified by an experienced technician or immunologist.

Sample 1 had been used to evaluate interinstrument variability for NOVA View in a previous study1 performed 1 year before the current study. This gave us the possibility to evaluate constancy of the results over a period of 7–19 months for 11 of the 12 NOVA View users. The results are represented in figure 2 and show statistically significant differences between LIU values obtained at two different time points for 6/11 laboratories. Of note, for five laboratories, no statistical significant differences between the two determinations were observed, which illustrates the potential of automated IFA analysis to provide reproducible results over a longer time period.

Taken together, although we could demonstrate reproducible ANA results for some laboratories, our results indicate variation in ANA detection by automated IFA systems. We not only found variation between automated IFA analysis using instruments from different manufacturers but also between instruments from the same manufacturer. Efforts should be undertaken to harmonise automated IFA analysis. This could include the use of standards, calibration of the instruments and monitoring of the quality of the slides and reagents.

Lieve Van Hoovels, Sofie Schouwers, Stefanie Van den Brent, Xavier Bossuyt

1Department of Laboratory Medicine, OLV Hospital Aalst, Aalst, Belgium
2Department of Laboratory Medicine, GZA Hospital, Antwerp, Belgium
3Department of Laboratory Medicine, University Hospital Leuven, Leuven, Belgium

Correspondence to Lieve Van Hoovels, Department of Laboratory Medicine, OLV Hospital Aalst, 9300 Aalst, Belgium; Lieve.Van.Hoovels@olvz-aalst.be

Acknowledgements We thank Sofie Arens (Klinisch laboratorium Declercq Ardoie), Jan Beckers (AZ Sint-Blasius Dendermonde), Mario Berth (AML Antwerpen), Juul Boes (AZ Turnhout), XB (UZ Leuven), Francis Corazza and Carole Nagant (CHU Brugmann Brussel), Bjorn Ghesquire and Ignace Van Hecke (CRI Zwinnaarde), Sylvie Goletti (UCL Louvain), An Joosten and Patricia Meirlaen (UZ Brussel), Julia Kovaleva (CMA Hasselt), Laurence Lutteri (CHU Liège), Laurence Miller and Patricia Evrard (CHU UCL Namur), An Nijs (AZ Groeninge Kortrijk), Mounzer Reda (Hôpital de Jolimont Haine-Saint-Paul), SS (GZA Antwerpen), Rita Schroder (Vivalia Arlon), Christine Tilmant (C.H.I.R.E.C. Braine l’Alleud), Tanja Troch (ASZ Aalst), Wim Uyttenbroeck (ZNA Jan Palfijn Antwerpen), LVH (OLVZ Aalst), Hilde Vanhouteghem
Correspondence

(AZ Maria Middelares Gent), Annemie Van Ruymbeke (AZ Alma Sijsele), Lut Vanneste (Labo Bruyland Kortrijk), Martine Versammen (AZ Sint-Jan Brugge), Ann Verdonck (Anacura Labo Nuytinck Evergem) and Sara Vijgen (Jessa ziekenhuis Hasselt) for participating in the study. We thank Heide De Baere and Nathalie Ruisseau (Menarini Benelux), Tom Gheskiere (Biognost cvba), Chris Raskin (Biomedical Diagnostics N.V./S.A Benelux) and Nathalie Vandeputte (Werfen N.V./S.A Benelux) for their practical support.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests XB has been a consultant for Inova Diagnostics.

Patient consent Not required.

Ethics approval Local ethical committee OLVZ: amendment for study 2015/100 (B126201525864) received on 07/03/2017.

Provenance and peer review Not commissioned; internally peer reviewed.

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.


Received 8 April 2018
Accepted 9 April 2018
Published Online First 20 April 2018

http://dx.doi.org/10.1136/annrheumdis-2018-213558


REFERENCES

