
Disclosure of Interest: R. Alten Grant/research support from: The study was sponsored by Pfizer, H. Jones Employee of: Pfizer, C. Curiale Employee of: Pfizer, T. Meng Employee of: Pfizer, L. Lucchese Employee of: Pfizer, C. Miglio Employee of: Pfizer, T. Meng Grant/research support from: The study was sponsored by Pfizer, H. Jones Employee of: Pfizer, C. Curiale Employee of: Pfizer, T. Meng.

REFERENCES:

Disclosure of Interest: R. Alten Grant/research support from: The study was sponsored by Pfizer, H. Jones Employee of: Pfizer, C. Curiale Employee of: Pfizer, T. Meng Employee of: Pfizer, L. Lucchese Grant/research support from: The study was sponsored by Pfizer, C. Miglio Grant/research support from: The study was sponsored by Pfizer

SAT0201

REAL WORLD EVIDENCE ON SWITCHING BETWEEN ETANERCEPT AND ITS BIOSIMILAR IN RHEUMATIC DISEASES

R. Alten, H. Jones, C. Curiale, T. Meng, L. Lucchese, C. Miglio, Schlosspark-Klinik, University Medicine Berlin, Berlin, Germany, 2Pfizer Inc., Collegeville, PA, United States, 3Pfizer, Rome, Italy, 4Pfizer Pharma GmbH, Berlin, Germany, 5IQVIA, London, United Kingdom

Background: Etanercept (Enb) is a biologic agent (BA) that has been proved to be successful in the treatment of rheumatic diseases, as acting by tumour necrosis factor inhibitor, but it is costly. In February 2016, the first etanercept biosimilar (EnbBS) was launched in Germany as a relatively cheaper alternative.

Objectives: In a recent study using the German Longitudinal Prescription data-base IQVIA® (LxRs) we showed that despite many patients (approximately 50%) were moved from EnbBA to EnbBS treatment over the year following its launch, some (10%) switched back to the original product after few months. As new data are available from the database, the objective of this second analysis was to evaluate switching-back dynamics over longer follow-up durations.

Methods: The German LRx covers prescription data from January 2008, representing approximately 60% of the German statutory health insurance market. The study period was from February 2016, date of EnbBS launch in Germany, to August 2017 (last available data). Patients receiving first EnbBS prescription (index date) during the study period were retrospectively identified and separated into two groups based on treatment received in the 12 months prior to index date: treatment-naïve patients (no prior biologic treatment) and patients previously treated with EnbBA or other anti-TNF biologics. For the latter group, the cumulative proportion of patients switching back from EnbBS to EnbBA and the median time to the switch-back were evaluated over 3 time periods corresponding to dates of new data availability within the data source: February 2016-September 2016 (1), February 2016-March 2017 (2), and February 2016-August 2017 (3). The results were compared using the chi square test with significance set at p<0.05. Data on the market share for biologic agents and their biosimilars in rheumatic diseases are also shown on a monthly basis, between January 2015 and August 2017.

Results: A total of 707, 1,607 and 2,229 patients were identified who received prior EnbBA treatment before switching to EnbBS in time periods 1, 2 and 3 respectively. Of these patients, the proportion of those who switched back to EnbBA significantly (p<0.05) increased over time: 53 (7%) in time period 1, 153 (10%) in time period 2 and 320 (14%) in time period 3. Patients generally switched back to the biologic agent within 3–4 months of starting EnbBS treatment. The use of EnbBS by rheumatologists has constantly grown since February 2016, with a market share of 6% in Dec 2016 increased to 12% in Aug 2017.

Conclusions: This study confirmed previous findings on switching dynamics between EnbBA and its biosimilar. In addition, the study shows that despite a consistent increase in the use of EnbBS since its launch, from September 2016 to August 2017, the proportion of patients who switch back to EnbBA after 3–4 months of initiating EnbBS has doubled.

REFERENCE:

Disclosure of Interest: R. Alten Grant/research support from: The study was sponsored by Pfizer, H. Jones Employee of: Pfizer, C. Curiale Employee of: Pfizer, T. Meng Employee of: Pfizer, L. Lucchese Grant/research support from: The study was sponsored by Pfizer, C. Miglio Grant/research support from: The study was sponsored by Pfizer

SAT0202

COMPARISON OF THE BIOAVAILABILITY OF A SINGLE DOSE OF CERTOLIZUMAB PEGOL INJECTED BY PRE-FILLED SYRINGE OR BY ELECTRO-MECHANICAL AUTO-INJECTION E-DEVICE: A PHASE 1, OPEN-LABEL, RANDOMISED, PARALLEL GROUP, SINGLE-CENTRE BIOEQUIVALENCE STUDY

R. Oliver1, B. VanLunen2, I. Mountain3, E. Brown4, D. Tatla5, 1UCB Pharma, Slough, United Kingdom, 2UCB Pharma, Raleigh, NC, United States, 3UCB Pharma, Brussels, Belgium

Background: When administered subcutaneously (SC) using a pre-filled syringe (PFS), the anti-TNF certolizumab pegol (CZP) has a half-life of ~14 days and has shown good bioavailability (~80%) at all tested doses in healthy volunteers and patients with rheumatoid arthritis.1,2 A reusable electro-mechanical auto-injector (AutoClicks®) delivers CZP into the subcutaneous tissue, providing a patient-controlled injection.2

Objectives: To determine if a single 200 mg CZP dose is bioequivalent when delivered SC by PFS or e-Device, and to assess the safety and tolerability of both administration methods.

Methods: NCT02906219 was a phase 1, open-label, randomized, parallel group, single-center bioequivalence study. Healthy volunteers were randomized 1:1 to receive CZP via either the PFS or e-Device. Primary outcomes were assessed using the pharmacokinetic per-protocol set (PK-PFS); maximum CZP plasma concentration (Cmax), area under the plasma concentration vs time curve (AUC0–t), and AUC from baseline (BL) to final data point (AUC0–t). At BL (Day 1), volunteers received a single 200 mg CZP dose. CZP plasma concentrations were measured on Day 1 prior to CZP administration, at 12 hours (h) post-dose, and on Days 2–7, 10, 14, 21, 28, 42, 56, and 70. Safety and tolerability were assessed using the safety set (all receiving a CZP dose) via reported treatment-emergent adverse events (TEAEs), serious AEs, and adverse device events (ADEs; AEs considered by the investigator to be related to the device). An injection site pain visual analog scale (VAS; 0-100 mm) was completed immediately post-injection (0 h) and 1 h post-injection.

Results: 100 healthy volunteers were randomized to receive CZP either via PFS (n=50) or e-Device (n=50). The mean CZP plasma concentration vs time profiles for the e-Device and PFS were comparable. Point estimates and 90% confidence intervals (CIs) for test/reference geometric mean ratios in Cmax in the EU1, and AUC were contained within bioequivalence limits of 80–125% (table 1). Both administration methods were equally well tolerated; all reported TEAEs were mild or moderate, with no ADEs or injection site reaction TEAEs. Mean VAS pain scores were low at 0 h (PFS: 10.7 [SD 14.3], e-Device: 18.0 [24.4]) and 1 h (1.4 [2.9] vs 2.7 [7.0]).

Table 1 Results of the bioequivalence analysis comparing the PFS and e-Device

| Parameter | PFS (n=50) | e-Device (n=50) | Point estimate | 90% CI | 90% CI confidence
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax (µg/mL)</td>
<td>48 (27.1, 80.5)</td>
<td>50 (27.1, 80.5)</td>
<td>1.00, 0.93, 1.07</td>
<td>20.6</td>
<td></td>
</tr>
<tr>
<td>AUC0–t (µg·h/mL)</td>
<td>47 (62.3, 71.7)</td>
<td>50 (62.3, 71.7)</td>
<td>1.00, 0.92, 1.09</td>
<td>25.6</td>
<td></td>
</tr>
<tr>
<td>AUC0–t (µg·h/mL)</td>
<td>45 (653.3, 754.5)</td>
<td>49 (634.3, 737.4)</td>
<td>0.96, 0.90, 1.07</td>
<td>24.6</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: CZP 200 mg doses were bioequivalent whether administered by PFS or e-Device. The SC-delivered CZP injections were well tolerated in healthy volunteers when using either method.

REFERENCES:

Acknowledgements: This study was funded by UCB Pharma. We thank the healthy volunteers in addition to the investigators and their teams who contributed to this study. Editorial services were provided by Costello Medical.

Disclosure of Interest: R. Oliver Employee of: UCB Pharma, B. VanLunen Employee of: UCB Pharma, B. VanLunen Employee of: UCB Pharma, 1UCB Pharma, 2UCB Pharma, 3UCB Pharma, 4UCB Pharma, 5UCB Pharma, D. Tatla Employee of: UCB Pharma