in Micro-CT data analysis was found between PEMFs group and gene knockouts, although a slight increase could be observed in TNF-α mice when compared to the PEMFs group. Negative effects on bone and cartilage were proved by testing key cytokines in anabolism and catabolism. PEMFs treatment and gene knockouts corrected the negative effects by targeting mediators in molecular pathways like Wnt and RANK. The differences in mRNA and protein level changes between PEMFs and gene knockouts were minor.

Conclusions: PEMFs alleviated surgeries induced bone loss and cartilage degeneration by promoting anabolism and inhibiting catabolism possibly in a similar mechanism to TNF-α and IL-6 gene knockouts, which imply that TNF-α and IL-6 may become new potential targets for PEMFs in treating degenerative bone diseases.

REFERENCES:

Acknowledgements: This work was supported by Grants from National Natural Science Foundation of China (No. 81572639 and 81770875 to X Yu, 81372110 and 81572236 to CQ He), the Chengdu Bureau of Science and Technology (No. 2014-HM01-00382-SF to X Yu, 2015-HM02-00042-SF to CQ He). We thank our colleagues from the Core Facility of West China Hospital for their consultation and technical guidance.

Disclosure of Interest: None declared

SAT0070

ROLE OF C/EBPB IN 1,25D-INDUCED ACTIVATION OF RANKL EXPRESSION
S. Je1, Y. L. Lee1, I.-H. Sung2, T.-H. Kim1,1 Rheumatology, Hanyang University Hospital For Rheumatic Disease; 2Orthopaedics, Hanyang University Seoul Hospital, Seoul, Korea, Republic Of

Background: 1 alpha 25-dihydroxyvitamin D3 (1,25D) is the active form of vitamin D3, which is responsible for osteoblast activation, subsequently bone formation. Although recent studies have shown that 1,25D stimulates RANKL expression in osteoblast differentiation 1, its molecular mechanism of action is not fully understood.

Objectives: The aims of this study were to evaluate cellular response of human bone-derived cells to 1,25D treatment by observing expression during osteoblast differentiation

Methods: In this study, MG63, SaOS2, and primary bone-derived cells (BdCs) were cultured and isolated to further elucidate the effect of 1,25D on osteoblasts. Those were incubated in osteogenic medium (ascorbic acid, beta-glycerol phosphate, and dexamethasone) for 1, 3, and 7 days with or without 20 μM 1,25D. The osteoblast activity and differentiation status were evaluated by intercellular Alkaline Phosphatase (ALP) activity, ALP staining, Alizarin Red S (ARS) staining, and histomorphometric staining. In this situation, C/EBPβ gene manipulation with siRNA or overexpression system were subject to report assay of human RANKL promoter, quantitative PCR(qPCR), immunoblotting and immunostaining of osteoblastic gene expression (alkaline phosphatase, osteocalcin, vitamin D3 receptor, RANKL, and C/EBPβ etc.)

Results: 1,25D promotes osteoblast differentiation and expression of osteogenic markers in three different cells. Intriguingly, treatment of 1,25D to those cells are accompanied by stabilising C/EBPβ proteins and stimulating RANKL expression. Moreover, Overexpression of C/EBPβ significantly increases RANKL mRNA and protein. In contrast, suppression of C/EBPβ decreases RANKL expression. Thus, C/EBPβ is a key mediator involved in 1,25D induced RANKL expression.

Conclusions: Our preliminary data indicated that human bone-derived cells response to vitamin D3 promoted RANKL expression via activation of C/EBPβ and enhanced osteoblast activity and differentiation. This study provides insight into the molecular mechanism of RANKL expression and osteoblast activation in human bone-derived cells response to 1,25D.

REFERENCE:

Disclosure of Interest: None declared

SAT0071

SUBCHONDRAL OSTEOGENESIS BUT NOT CARTILAGE DAMAGE IS PREVAILING IN KNEE JOINTS OF PREMATURELY AGEING MITOCHONDRIAL DNA MUTATOR MICE
J. Geurts1, S. Nasif2, T.A. Prolla3, G.C. Kupcho4, U.A. Walker4, T. Hübner5, 6 Spine and Surgery and Biomedical Engineering, University Hospital Basel, Basel, 7Rheumatology, University Hospital Lausanne, Lausanne, Switzerland, 8Medical Genetics, University of Wisconsin, Madison, USA, 9Rheumatology, University Hospital Basel, Basel, Switzerland

Background: Mitochondrial dysfunction has been demonstrated in ageing and osteoarthritic tissues. However it remains unclear whether dysfunctional mitochondria are directly implied in the pathogenesis of osteoarthritis.

Objectives: We investigated knee joints of prematurely ageing mitochondrial DNA mutator mice (Polyg(mtr)5) to evaluate a causal relationship between mitochondrial dysfunction and different features of osteoarthritis.

Methods: Bone structural parameters and chondropy were evaluated in knee joints of mice displaying increased mtDNA mutations rates and accelerated ageing, due to expression of a proofreading-deficient mtDNA polymerase, using micro-computed tomography and histopathological analysis.

Results: Homozygous mutants displayed osteopenia of the epiphyseal trabecular bone and subchondral cortical plate in comparison to wild type controls and heterozygous mutants. Osteopenia was associated with a strong increase of osteoclast numbers (0.88±0.30/mm bone perimeter) compared to heterozygous (0.25±0.03/mm) and wild type mice (0.12±0.04/mm). New bone formation was not observed. Wild type mice displayed only low grade cartilage degeneration (OARSI grade ≤1) due to loss of cartilage proteoglycans. Increased bifocal femoral chondroplasty was not apparent in hetero- and homoygous mitochondrial DNA mutator mice.

Conclusions: Mitochondrial dysfunction and premature ageing in mice with somatically acquired mtDNA mutations predispose to enhanced subchondral bone resorption as potential early step of osteoarthritis, but not to cartilage damage or new bone formation. This phenotype potentially corresponds to an osteoporotic osteoarthritis phenotype in humans.

Disclosure of Interest: None declared

SAT0072

MIRNA-146A IS A KEY PLAYER IN BONE METABOLISM AND OSTEOPOROSIS
V. Saterfeld1, M. Hofmann1, J.S. Brunner2, M.F. Millaru3, A. Pucher3, S. Hayer3, M. Timmer1, R. Stange1, J.S. Smolen1, S. Blüm1, 1Medical University Of Vienna, Vienna, Austria; 2University Muenster, Muenster, Germany

Background: Micro RNAs (miRNAs) play a crucial role in the regulation of bone metabolism. MiR-146a, an important anti-inflammatory miRNA, was found to negatively impact osteogenesis and bone regeneration in vitro, by controlling the differentiation of mesenchymal stem cells. But to date the role of miR-146a in bone...
remodelling, its influence on bone stability and development of osteoporosis is not known.

Objectives: The objective of this project is the analysis of the role of miR-146a in bone metabolism.

Methods: Systemic bone, tibiala and femur, of wt and miR-146a deficient animals was assessed histologically and via μCT analysis, over a period of 3 to 18 months of age. Serum cytokine levels were analysed by Elisa. MRNA expression levels in bone were analysed by qPCR. To induce osteoporosis, ovariectomy (OVX) induced bone loss was performed.

Results: When we analysed bone volume of long bones histologically as well as with μCT analysis we detected significantly increased trabecular bone mass in miR-146a deficient compared to wt animals, starting at an age of 6 months. However, cortical thickness of systemic bones from miR-146a knock out animals was significantly reduced compared to control mice. Analysis of serum in aged miR-146a deficient animals displayed elevated expression of signature molecules of both cell types in aged miR-146a deficient mice, suggesting a regulatory role of miR-146a in both osteoclasts as well as osteoblast marker genes in bones ex vivo displayed elevated expression of signature molecules of both cell types in aged miR-146a deficient mice. O-PCR analysis of important osteocalc as well as osteoblast marker genes in mice showed significant trabecular bone loss in ovariectomy wt mice. In contrast, we detected no trabecular bone loss in ovariectomized miR-146a knock out animals, suggesting that loss of miR-146a deficiency protects bone loss induced by oestro-gen deficiency.

Conclusions: MiR-146a seems to control bone turnover and miR-146a deficient mice accrue bone over time. Moreover this miRNA has a negative influence on bone loss occurring during oestrogen loss induced osteoporosis. Therefore miR-146a could be possibly used as a therapeutic target in the treatment of osteoporosis.

Disclosure of Interest: None declared

Rheumatoid arthritis – prognosis, predictors and outcome

SAT0073

ACPA AND RF AS PREDICTORS OF SUSTAINED CLINICAL REMISSION IN RHEUMATOID ARTHRITIS PATIENTS: RESULTS FROM THE ONTARIO BEST PRACTICES RESEARCH INITIATIVE (OBRI)

J.E. Pope1, M. Movahedi2,3, E. Rampakakis2, A. Cesta2, J.S. Sampalis1, C. Bombardier2,5,7,9,21

1Department of Medicine (DOM) and Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Canada; 2Jewish General Hospital, Montreal, Quebec, Canada; 3Montreal Clinical Research Institute, Montreal, Quebec, Canada; 4Division of Rheumatology, McGill University, Montreal, Quebec, Canada; 5MUSCat and University of Sherbrooke, Sherbrooke, Quebec, Canada; 6Division of Rheumatology, Mount Sinai Hospital, Toronto, Canada; 7Ontario Best Practices Research Initiative, University of Toronto, Toronto, Canada

Background: Positive anti-citrullinated protein antibody (ACPA) and rheumatoid factor (RF) are included among the 2010 ACR/EULAR classification criteria for rheumatoid arthritis (RA). Previous studies have shown that autoantibodies are positive predictors of response in RA patients treated with some biologics whereas other studies suggest worse prognosis if positive for ACPA and RF.

Objectives: The purpose of this study was to evaluate the interaction of RF and ACPA in predicting sustained clinical response in a large observational registry of RA patients followed in routine practice.

Methods: RA patients enrolled in the Ontario Best Practices Research Initiative (OBRI) registry, with active disease (≥1 swollen joint), available autoantibody information, and at least 1 follow-up assessment were included in the analysis. Sustained clinical remission was defined as CDAI 2.8 in at least 2 sequential visits separated by at least 3 and maximum of 12 months. Time to sustained remis-sion was assessed by plotting cumulative incidence curves and multivariate cox regression.

Results: A total of 970 (30%) out of 3251 patients in the registry were included, of whom 262 (27%) were anti-CCP-pos/RF-pos 60 (6.2%) anti-CCP-pos/RF-pos 117 (12.1%) anti-CCP-pos/RF-pos, and 531 (54.7%) anti-CCP-pos/RF-pos. At baseline, significant differences were observed between groups in age (p=0.02), CDAI (p=0.03), tender joint count (p=0.02), and HAQ-DI (p=0.002), with anti-CCP pos/RFpos significant differences were observed between groups in age (p=0.02), CDAI (p=0.004) (figure 1). ACPA pos/RFneg (median: 3.7 years; 95% CI: 3.0–4.3) and ACPA pos/RFpos (median: 3.4 years; 95% CI: 2.4–NE) patients achieved sustained remission earlier than ACPA pos/RFneg patients (median: 5.1 years; 95% CI: 3.7–6.2), respectively (figure 1). Multivariate cox regression adjusting for baseline CDAI score, age and sex also showed differences between groups; statistical significance in anti-CCP pos/RFpos vs. anti-CCP neg/RFneg patients (HR [95% CI]: 1.30 [1.01–1.67]; p=0.04).

Conclusion: These results suggest that anti-CCP but not RF positivity may be associated with a higher chance of remission, possibly due to an improved treat-ment response.

Disclosure of Interest: J. Pope Grant/research support from: OBRI was funded by peer reviewed grants from CIHR (Canadian Institute for Health Research), Ontario Ministry of Health and Long-Term Care (MOHLTC), Canadian Arthritis Network (CAN) and unrestricted grants from: Abbvie, Amgen, Celgene, Hospira, Janssen, Lilly, Merck, Novartis, Pfizer, Roche, Sanofi, and UCB, M. Movahedi Employee of: OBRI, E. Rampakakis Employee of: JSS Medical Research, A. Cesta Employee of: OBRI, J. Sampalis: None declared, C. Bombardier Grant/ research support from: OBRI was funded by peer reviewed grants from CIHR (Canadian Institute for Health Research), Ontario Ministry of Health and Long-Term Care (MOHLTC), Canadian Arthritis Network (CAN) and unrestricted grants from: Abbvie, Amgen, Celgene, Hospira, Janssen, Lilly, Merck, Novartis, Pfizer, Roche, Sanofi, and UCB, Consultant for: Dr. Bombardier holds a Canada Research Chair in Knowledge Transfer for Musculoskeletal Care and a Pfizer Research Chair in Rheumatology

SAT0074

IDENTIFICATION OF A PROTEIN PANEL USEFUL FOR THE PREDICTION OF RESPONSE TO METHOTREXATE IN RHEUMATOID ARTHRITIS PATIENTS

C. Ruiz-Romero1, F. Picchi1, L. González-Rodríguez1, P. Fernández-Puente1, R. Hands2, V. Calami1, M. Camacho-Encina1, C. Bessant3, C. Pitzalis2, F. J. Blanco1, 2

1Unidad de Proteómica-ProteoRed/ISCIII, Grupo de Investigación en Reumatología, INIBIC – CHUAC, A Coruña, Spain; 2Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary University of London; 3School of Biological and Chemical Sciences, Queen Mary University of London, London, UK

Background: The treatment of rheumatoid arthritis (RA) aims to control a patient’s signs and symptoms, prevent joint damage, and maintain his/her quality of life. Among the best known disease-modifying antirheumatic drugs, Methotrexate (MTX) is one of the most effective and widely used medications. It is used as a general first-choice drug, although some patients will not respond to this treatment and it is not free from side effects.

Objectives: To identify circulating proteins that could be useful as predictors of the patient’s response to MTX.